

51st Brazilian Congress of Pharmacology and Experimental Therapeutics

Ruth Cardoso Convention Center September 24-27, 2019 Maceió, AL

Program

Sociedade Brasileira de Farmacologia e Terapêutica Experimental (SBFTE) Executive Secretary http://www.sbfte.org.br sbfte@sbfte.org.br

Welcome Letter

Dear Friends and Colleagues,

On behalf of the board of directors of SBFTE and the members of the Organizing Committee, it is my great pleasure to welcome you to the beautiful Maceió and to our 51st Brazilian Congress of Pharmacology and Experimental Therapeutics!

We dedicated all efforts to repeat in the 51st Congress the great success attained in our 46st Congress, which was held in Fortaleza, CE, 2014. This is because the 51st Congress will be only the second Brazilian Pharmacology Congress organized by SBFTE to be held in the Northeast part of Brazil, a region renowned by a lively pharmacology and with top-notch pharmacologists.

The Scientific Committee of the 51st Congress carefully prepared a rich Scientific Program to provide a comprehensive overview of the latest research developments in varied areas of pharmacology. An outstanding group of speakers from Brazil and abroad will take part in the 51st Congress and share with us the most significant advances in our conferences, lectures, symposia and round tables. Nearly 500 posters with inspiring scientific material were carefully selected and will be exhibited in our two 2-days sections assuring that the meeting will be a major scientific event for all of us.

We would like to express our thanks to Capes, CNPg and Fapesp for providing the financial support for our 51st Congress, despite the major budget cuts that have been recently imposed to them. We also must express our gratitude to the Alagoas State locals, which provided us a very opportune support: Fundação de Amparo à Pesquisa do Estado de Alagoas (Fapeal) Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde (ICBS-UFAL) Programa de Pós-Graduação em Ciências da Saúde (PPGCS-ICBS-UFAL), and Instituto Hemerson Casado Gama. Special acknowledgements must be made to Biolab Sanus Farmacêutica for our long-time partnership sponsoring the José Ribeiro do Valle Award, and to Aché Laboratórios for the 2nd edition of the Senior Pharmacologist Award. Also noteworthy is the strong presence of our Commercial Exhibitors, who bring to our Congress the latest technologies in terms of equipment, methodologies, materials, protocols and services in the field. We are very thankful for their participation. Our Annual meetings have traditionally combined great scientific content with a fantastic opportunity to see old friends, make new ones and boost our network of collaborations. We are certain we will keep this tradition this year in the paradisiac Maceio, and we hope you all have spared some days to enjoy the city and the surroundings, either before or after our Congress. We truly appreciate all SBFTE members, Colleagues, Invited Speakers and Collaborators and hope we all have a great time during our 51st Congress.

We look forward to welcoming all of you to Maceió!

André S. Pupo Congress President Emiliano Barreto Local Organizing Committee Coordinator

Sociedade Brasileira de Farmacologia e Terapêutica Experimental (SBFTE) Executive Secretary http://www.sbfte.org.br sbfte@sbfte.org.br

Index

Welcome Letter	3
Index	5
SBFTE Board of Directors (2018-2020)	7
Past Board of Directors and Deliberative Council Members	8
2019 Congress Committees	11
Useful information	13
Satellite Meetings	15
Keynote Speaker: Opening Lecture	17
Prize Awards: Second Senior Pharmacologist Award Edition	17
Keynote Speaker: Sergio Ferreira Lecture	20
Closing Lecture Senior Pharmacologist Award Recipient	18
José Ribeiro do Valle Award First Place Winner History	19
José Ribeiro do Valle Award – 2019 Finalists	20
About SBFTE Jovem	21
Program at a Glance	23
Scientific program	25
23/09/2019 (Monday)	25
24/09/2019 (Tuesday)	26
25/09/2019 (Wednesday)	28
26/09/2019 (Thursday)	33
27/09/2018 (Friday)	39
Poster session 1	41
01. Cellular and Molecular Pharmacology	41
02. Neuropharmacology	41
03. Psychopharmacology	43
04. Inflammation and Immunopharmacology	44
05. Pain and Nociception Pharmacology	46
06. Cardiovascular and Renal Pharmacology	47
07. Endocrine, Reproductive and Urinary Pharmacology	49
08. Respiratory and Gastrointestinal Pharmacology	50
09. Natural Products and Toxinology	51
10. Cancer Pharmacology	54
11. Clinical Pharmacology, Pharmacokinetics, Pharmacogenomics and Toxicology	56
12. Drug Discovery and Development	56
14. Pharmacology: Other	57
Poster session 2	58
01. Cellular and Molecular Pharmacology	58
02. Neuropharmacology	59
03. Psychopharmacology	60
04. Inflammation and Immunopharmacology	61
05. Pain and Nociception Pharmacology	63
06. Cardiovascular and Renal Pharmacology	64
07. Endocrine, Reproductive and Urinary Pharmacology	66
08. Respiratory and Gastrointestinal Pharmacology	66
09. Natural Products and Toxinology	68
10. Cancer Pharmacology	71
51st Brazilian Congress of Pharmacology and Experimental Therapeutics	5
Sist Brazinan congress of Harmacology and Experimental merapeutics	J

11. Clinical Pharmacology, Pharmacokinetics, Pharmacogenomics and Toxicology	72
12. Drug Discovery and Development	72
14. Pharmacology: Other	73
Lecture abstracts	74
Courses	74
Lectures	78
Symposia and Roundtables	82
Authors Index	100
SBFTE thanks the following organizations for the Sponsorship	127

SBFTE Board of Directors (2018-2020)

President:

André Sampaio Pupo (Unesp-Botucatu)

Vice President:

Cristoforo Scavone (USP)

Executive Director:

Patrícia M. Rodrigues e Silva (Fiocruz)

Administrative Director:

Roberto Cesar Pereira Lima Junior (UFC)

Financial Director:

Soraia Katia Pereira Costa (USP)

Deliberative Council

Carlos Fernando de Mello (UFSM) Cláudia Lúcia Martins da Silva (UFRJ) Emiliano de Oliveira Barreto (UFAL) Maria Christina W. de Avellar (Unifesp-EPM) (Past President) Paulo César Ghedini (UFG) Rui Daniel Schröder Prediger (UFSC) Thiago Mattar Cunha (USP)

Financial Council

Cristiano Gonçalves Ponte (IFRJ) Marcelo N. Muscará (USP) Vinicius de Frias Carvalho (Fiocruz)

Past Board of Directors and Deliberative Council Members

2015-2017

President: Maria Christina W. Avellar Vice President: Letícia V. Costa Lotufo Executive Director: Fernando de Q. Cunha Administrative Director: Patrícia M. R. e Silva

Financial Director: Rosely O. Godinho

Council Members (2015-2017)

Carlos Fernando de Mello (UFSM) Emiliano de Oliveira Barreto (UFAL) François G. Noël (UFRJ) Mauro M. Teixeira (UFMG) Teresa Cristina T. Dalla Costa (UFRGS) Thereza Christina Barja-Fidalgo (UERJ) Thiago Mattar Cunha (USP)

2012-2014

President: Mauro M. Teixeira Vice-President: Fernando de Q. Cunha Executive Director: Letícia Costa Lotufo Adminsitrative Director: Yara Cury Financial Director: Maria Christina W. Avellar

Council Members (2012-2014)

Carlos Fernando de Mello (UFSM) Cristoforo Scavone (USP-SP) Emiliano de Oliveira Barreto François G. Noël (UFRJ) (Presidente Jamil Assreuy (Ex-Presidente) Lusiane Bendhack (USP-RP) Marcelo N. Muscará (USP-SP) Rosely O. Godinho (Unifesp-EPM) Teresa Cristina T. Dalla Costa (UFRGS)

2009-2011

President: Jamil Assreuy Vice-President: Mauro M. Teixeira General Secretary: Rosely O. Godinho First-Secretary: Teresa C. T. Dalla Costa Treasurer: Ronaldo de A. Ribeiro

Council Members (2009-2011)

Cristoforo Scavone (USP-SP) Edson Antunes (Unicamp) Francisco Silveira Guimarães (USP-RP) Lusiane M Bendhack (USP-RP) Maria Christina W. Avellar (Unifesp-EPM) Regina P. Markus (USP) (ex-presidente) Thereza Christina Barja-Fidalgo (UERJ) Yara Cury (Instituto Butantan)

2006-2008

President: Regina P. Markus Vice-President: Jamil Assreuy General Secretary: Marco A. Martins Secretary: Mauro M. Teixeira Treasurer: Maria Elisabeth A. de Moraes

Council Members (2006-2008)

Aron Jurkiewicz (Unifesp-EPM) Emer Suavinho Ferro (USP-SP) Fernando de Queiroz Cunha (USP-RP) Giles A. Rae (UFSC) (ex-presidente) Iolanda M. Fierro (UERJ) Jamil Assreuy (UFSC) Maria Christina W. Avellar (Unifesp-EPM) (Presidente) Thereza Christina Barja Fidalgo (UERJ) Yara Cury (Instituto Butantan)

2004-2005

President: Giles A. Rae Vice-President: Regina P. Markus General Secretary: François G. Noël Secretary: Isac A. Medeiros Treasurer: Mauro M. Teixeira

Council Members (2004-2005)

Antonio José Lapa (Unifesp-EPM) Aron Jurkiewicz (Unifesp-EPM) Cristoforo Scavone (USP-SP) Jamil Assreuy (UFSC) (Presidente) João Batista Calixto (UFSC) Maria Christina W. Avellar (Unifesp-EPM) Rita C. A. Tostes (USP Yara Cury (Instituto Butantan)

2002-2003

President: Giles A. Rae Vice-President: Manassés C. Fonteles General Secretary: Edson Antunes Secretary: François G. Noël Treasurer: Mauro M. Teixeira

Council Members (2002-2003)

Antonio José Lapa (ex-presidente) Cristoforo Scavone (USP-SP) Edson Antunes (Unicamp) Gloria E. P. de Souza (USP-RP) Jamil Assreuy (UFSC) João Batista Calixto (UFSC) Maria Christina W. Avellar (Unifesp-EPM) Regina P. Markus (USP-SP) Rita C. A. Tostes (USP-SP)

2000-2001

President: Antonio José Lapa Vice-President: Roberto Soares de Moura General Secretary: Caden Souccar Secretary: Francisco Ruy Capaz Treasurer: Thereza C. M. de Lima

Council Members (2000-2001)

Catarina Segretti Porto (Unifesp-EPM) Edson Antunes (Unicamp) Gloria E. P. de Souza (USP-RP) Jamil Assreuy (UFSC) João Batista Calixto (UFSC) Maria Cristina O. Salgado (USP-RP) Regina P. Markus (USP-SP) Zuleica Bruno Fortes (USP-SP)

1998-1999

President: Maria Cristina O. Salgado Vice-President: Regina P. Markus General Secretary: Gustavo Ballejo Secretary: José Geraldo Mill Treasurer: Jamil Assreuy

Council Members (1998-1999)

Antonio José Lapa (Unifesp-EPM) Catarina Segretti Porto (Unifesp-EPM) Eduardo V. Tibiriçá (Fiocruz) Fernando de Q. Cunha (USP-RP) Gilberto de Nucci (Unicamp) João Batista Calixto (UFSC) Zuleica B. Fortes (USP-SP)

1996-1997

President: João B Calixto Vice-President: Maria Cristina O. Salgado General Secretary: Jamil Assreuy Secretary: Giles A. Rae Treasurer: Carlos A. Flores

Council Members (1996-1997)

Catarina S. Porto (Unifesp-EPM) Eduardo V. Tibiriçá (Fiocruz) Fernando de Queiroz Cunha (USP-RP) Gilberto de Nucci (UNICAMP)

1994-1995

President: João B Calixto Vice-President: William A. do Prado General Secretary: Giles A. Rae Secretary: Manoel Odorico de M Filho Treasurer: Jamil Assreuy Filho

Council Members (1994-1995)

Catarina S. Porto(Unifesp-EPM) Fernando M. A. Correa (USP-RP) (presidente do Conselho) Marco Aurelio Martins (Fiocruz) Renato S. B. Cordeiro (Fiocruz) (expresidente) Zuleika P. Ribeiro do Valle (USP-SP)

1992-1993

President: Renato S. B. Cordeiro Vice-President: João B. Calixto General Secretary: Giles A. Rae Secretary: Manoel Odorico de M. Filho Treasurer: Patrícia M. R. e Silva

Council Members (1992-1993)

Caden Souccar (Unifesp-EPM) (1990-1992) Catarina S. Porto (Unifesp-EPM) Fernando M. Corrêa (USP-RP) (Presidente) Gilberto de Nucci (Unicamp) Giles A Rae (UFSC) Paulina S. Sannomya (USP-SP) Regina P. Markus (USP-SP) William A. do Prado (USP-RP) Zuleika Ribeiro do Valle (Unifesp-EPM)

1990-1991

President: Renato S. B. Cordeiro Vice-President: João B. Calixto General Secretary: Regina P. Markus First Secretary: Krishnamurti M. Carvalho Treasurer: Patrícia M. R. e Silva

Council Members (1990-1991)

Antonio J. Lapa (Unifesp-EPM) Caden Souccar (Unifesp-EPM) Fernando M. A. Correa (USP-RP) Giles A Rae (UFSC) Mario Tannhauser (UFRGS) Therezinha B. Paiva (Unifesp-EPM) William A. do Prado (USP-RP) Zuleica Bruno Fortes (USP-SP) Paulina Sannomya (USP) Sergio H. Ferreira

1988-1989

President: Sergio H. Ferreira Vice-President: Guilherme Suarez-Kurtz General Secretary: João Garcia Leme First Secretary: Fernando Morgan de A. Correa

Treasurer: William A. do Prado

Council Members (1988-1989)

Antonio J. Lapa (Unifesp-EPM) Aron Jurkiewicz (ex-Presidente) Frederico Graeff (USP-RP) João Batista Calixto (UFSC) Mario Tannhauser (UFRGS) Regina P. Markus (USP-SP) Renato Balão Cordeiro (Fiocruz) Therezinha B. Paiva (Unifesp-EPM) Zuleica Bruno Fortes (USP-SP)

1986-1987

President: Sergio H. Ferreira Vice-President: Guilherme Suarez-Kurtz General Secretary: João Garcia Leme First Secretary: Fernando Morgan de A. Correa Treasurer: William A. do Prado

1984-1985

President: Aron Jurkiewicz Vice-President: Roberto Soares de Moura General Secretary: Sergio H. Ferreira First Secretary: João Palermo Neto Treasurer: Therezinha Bandieira Paiva

Council Members (1984-1985)

Antonio J. Lapa (Unifesp-EPM) E. A. Carlini (Unifesp-EPM) Frederico G. Graeff (USP-RP) Guilherme Suarez-Kurtz (INCa)

1982-1983

President: Alexandre P. Corrado Vice-President: Aron Jurkiewicz General Secretary: Sergio H. Ferreira First Secretary: Roberto Soares de Moura Treasurer: Adolfo M. Rothschild

1966-1981

President: Maurício Rocha e Silva Vice-President: José Ribeiro do Valle General Secretary: Alexandre P. Corrado First Secretary: Lauro Sollero Treasurer: Hanna A. Rothschild

2019 Congress Committees

Organizing Committee

André Sampaio Pupo (Unesp-Botucatu, Coordinator) Cristoforo Scavone (USP) Roberto Cesar Pereira Lima Junior (UFC) Patrícia M. R. e Silva (Fiocruz-RJ) Soraia Katia Pereira Costa (USP) Sandra H. R. S. Cruz (Executive Secretary)

Scientific Committee

Flávia Almeida Santos (UFC, Coordinator) Enilton A. Camargo (UFS) Fabiola Taufic Mónica Iglesias (Unicamp) Marco Aurélio Martins (Fiocruz-RJ) Rosana Camarini (USP-SP) Rui Daniel S. Prediger (UFSC)

Local Committee

Emiliano Oliveira Barreto (UFAL, Coordinator) Jamylle Nunes de Souza Ferro (UFAL) Juliane Pereira da Silva (UFAL) Marcelo Duzzioni (UFAL)

Fundraising Committee

Fábio Cardoso Cruz (Unifesp, Coordinator) Carlos Dias Junior (Unesp-Botucatu) Emiliano Oliveira Barreto (UFAL) Thiago Mattar Cunha (USP-RP)

SBFTE Young Trainee Committee

Eduardo Koji Tamura (UESC) Fábio Cardoso Cruz (Unifesp-EPM) João Alfredo de Moraes Gomes Silva (UFRJ) Sanseray da Silveira Cruz-Machado (USP) Simone Regina Potje (USP)

SBFTE Young Trainee Support Committee

Aleksandro Martins Balbino (UNIFESP) Ana Cristina da Mata Silva (UFRJ) Augusto Anésio (UNIFESP) Avner de Almeida Silva (UESC) Gilda Angela Neves (UFRJ) Kallyane Santos Oliveira Silva (UESC) Lucas Silva Franco (UFRJ) Manuella Lanzetti Daher de Deus (UFRJ) Marla Calazans (UFMG)

Abstract Evaluation Committee

Roberto Cesar Pereira Lima Junior (UFC, Coordinator) Patrícia Martins Silva (Fiocruz) Jamylle Nunes de Souza Ferro (UFAL) Lirlândia Pires de Souza (UFMG) Priscila de Souza (UFPR) Ana Lucia Pires (Fiocruz-RJ, Secretary)

Poster Evaluation Committee

Roberto Cesar Pereira Lima Junior (UFC, Coordinator) Patrícia Martins Silva (Fiocruz) Jamylle Nunes de Souza Ferro (UFAL) Lirlândia Pires de Souza (UFMG) Priscila de Souza (UFPR) Ana Lucia Pires (Fiocruz-RJ, Secretary)

José Ribeiro do Valle Award Committee

Teresa Dalla Costa (UFRGS, Coordinator) Anthony Grace (University of Pittsburgh) Maria Fernanda de Paula Werner (UFPR)

Ache-SBFTE Senior Pharmacologist Award Committee

Hernandes F. Carvalho (FeSBE, Coordinator) Jorge A. Guimarães (EMBRAPII) Michael Spedding (IUPHAR)

Promoting Pharmacology in Primary Public Schools in Maceió Committee

André Sampaio Pupo (Unesp-Botucatu) Fabio Cardoso Cruz (SBFTE Jovem, Unifesp-EPM)

Abstract reviewers

Aleksander Roberto Zampronio Alexandra Acco Ana Carolina de Carvalho Correia Ana Jérsia Araújo Ana Maria Marques Orellana André Klein Andre Sampaio Pupo Arquimedes Gasparotto Junior Bruna Lima Roedel dos Santos Bruno Lourenco Diaz Cássia Regina da Silva Cháriston André Dal Belo Claudia Lucia Martins Silva Cristiano Goncalves Ponte Deysi Viviana Tenazoa Wong Diana Zukas Andreotti Viana Diego Wilke Edilson Dantas da Silva Junior Edson Antunes Elisa Mitiko Kawamoto Emer Suavinho Ferro Emiliano Barreto Enilton Aparecido Camargo Erick José Ramo da Silva Fernanda Regina de Castro Almeida Elávia Almeida Santos Francisco Silveira Guimaraes Fulvio Rieli Mendes Gilda Angela Neves Giles Alexander Rae Gustavo Balleio Olivera Jacqueline Alves Jamil Assreuy Jamvlle Nunes de Souza Ferro Jand Venes Rolim Medeiros Jessika Cristina Bridi Ioão Alfredo de Moraes José Carlos Farias José Delano Barreto Marinho Filho Juliano Ferreira Karoline Saboia Aragão Leticia Veras Costa Lotufo Luis Eduardo Menezes Quintas Marco Aurélio Martins Maria Aparecida Visconti Maria Christina W. Avellar Maria Fernanda de Paula Werner Mariana Renovato Martins Newton Goncalves de Castro Patrícia Machado R. e Silva Martins Paula Fernanda Kinoshita Paulo De Assis Melo Regina de Sordi Rita Tostes Roberto César Pereira Lima Júnior Rodrigo Molini Leão Rosana Camarini Rosane Gomez Rosely Oliveira Godinho Sandra Helena Penha de Oliveira

Soraia Katia Pereira Talita Perdigão Domiciano Tarcilia Aparecida Silva Vanda Lucia Dos Santos Vanessa Moreira Waldiceu Aparecido Verri Junior

Useful information

Secretariat

Congress Secretariat will be open from 08h to 18h

Posters

- All posters should be on display until the end of your poster presentation, when they should be taken off.
- Poster presenters must attend the Session scheduled by the scientific committee (Sep 25 from 16h50 to 18h50 and Sep 27 from 10h00 to 12h00) when posters will be viewed by Poster Evaluators.
 - **Poster Session 1**: You should fix your poster at the time you arrive at the Convention Center on Sep 25 and take it off at the end of the session on Sep 25 (18h50).
 - **Poster Session 2**: You should fix your poster on Sep 27 (morning) and take it off at the end of the session on Sep 27, at 12h00.

Certificates

The Certificates will be available online in the system until 10 days after the event. You can download in PDF in the Certificates area.

Courses

The course certification will be given for the participants with at least 2 classes attendance.

Media Desk

Media desk will be open from 8h to 18h. All speakers are requested to leave the material at Media Desk at least two hours before presentations. All rooms have *data show*. If you need any other equipment, please inform Media Desk as soon as possible. Lecturers presenting talks at 8h should leave their material at the Media Desk the day before the presentation.

Badges

The use of badge is mandatory for all activities and circulation areas in the Convention Center.

Abstracts

Abstracts presented at the poster session will be available at SBFTE website (http://www.sbfte.org.br).

Social Activities

Welcome cocktail 24/09/2019 – 20h30-22h30 Maceió Convention Center

Special Dinner by Adhesion

25/09/2019 – 20h30-10h30 Anamá Restaurant (Avenida. Silvio Carlos Viana, 2501 – Ponta Verde) *Payment and information at the registration desk

Get together party

26/09/2019 – 21h00-01h00 **Maikai** (Av. Eng. Paulo Brandão Nogueira, 540)

*In the Meeting bag you will find an identification bracelet. Keep it to enter and during the **Get** Together Party

51st Brazilian Congress of Pharmacology and Experimental Therapeutics

Sociedade Brasileira de Farmacologia e Terapêutica Experimental (SBFTE) Executive Secretary http://www.sbfte.org.br sbfte@sbfte.org.br **Satellite Meetings**

Novel Insights in Mediators and Natural Products in Cancer, Vascular and Inflammatory Regulation

When: 23rd September 2019 Time: 9h:00 - 17:00 h Where: Pink Conference Room – Institute of Biomedical Sciences – ICB/USP Edifício Biomédicas IV - Av. Prof. Lineu Prestes, 1730 Coordinators: Dr. Luciana B. Lopes & Dr. Soraia Costa Note: These classes are part of the PG course content BMF-5895 (2 credits) Program 9:00 - Welcome session Dr. Luciana Lopes & Dr. Soraia Costa, Department of Pharmacology (ICB/USP) 9:30 - Targeting cancer proteins with marine natural products Dr. Leticia C. V. Lotufo, Department of Pharmacology (ICB/USP) 10:20 - Development of a novel multi-target analgesic drug for neuropathic pain Dr. Zsuzsanna Helyes, Centre for Neuroscience, University of Pécs, Hungary 11:10 – Spleen-liver communication in systemic inflammation Dr. Alexandre A. Steiner, Department of Immunology (ICB/USP) 12:00 – Lunch break 14:00 - CGRP and its role in cardiovascular regulation Dr. Susan Brain, School of Cardiovascular Medicine & Sciences, King's College, London 14:50 - The TRPA1-mediated effects of H₂S and polysulfides Dr. Erika Pinter, Department of Pharmacology & Pharmacotherapy, University of Pécs, Hungary 15:40 - Application of photobiomodulation in different animal models Dr. Marúcia Chacur, Department of Anatomy, (ICB/USP) 16:30 - Concluding remarks Interprise[®]

> DEPARTAMENTO DE ARMACOLOGIA

Keynote Speaker: Opening Lecture

Sara M. Rankin (Imperial College London, UK).

Sara Rankin is Professor of Leukocyte and Stem Cell Biology at the National Heart and Lung Institute, Imperial College London.

Professor Rankin obtained a first class Hons Degree and PhD in Pharmacology from Kings College, London. She then undertook postdoctoral positions in the Department of Medicine, UCSD, and at the Imperial Cancer Research Fund (now Cancer Research UK). Professor Rankin joined the Leukocyte Biology Section of

the Institute in 1995 with a Wellcome Trust Career Development Award. She subsequently obtained a Wellcome Trust University award and is now a Professor in Leukocyte and Stem Cell Biology. Her research focuses on understanding the impact of the bone marrow in inflammatory diseases and elucidating the molecular mechanisms regulating the exit of leukocytes and stem cells from the bone marrow. Current research areas include: *Neutrophil clearance by the bone marrow. Molecular mechanisms regulating the mobilisation of haematopoietic, endothelial and mesenchymal progenitor cells. Trafficking of mesenchymal stem cells in vivo. The role of endothelial progenitor cells in angiogenesis in models of allergic airways inflammation.* Professor Rankin currently holds grants from the Wellcome Trust, The European Commission, the British Heart Foundation, the Medical Research Council and Industrial collaborators. She was awarded her Certificate in Advanced Studies in Learning and Teaching in 2001. She is a postgraduate tutor and Deputy Head of Postgraduate studies for NHLI. Professor Rankin is the Institute lead for Outreach and is involved in a variety of public engagement and outreach activities. Professor Rankin is on the Education Committee for the British Pharmacological Society and is a Fellow of the Society of Biology.

Prize Awards: Second Senior Pharmacologist Award Edition

Senior Pharmacologist Award History

- 2017 First Senior Pharmacologist Award Recipient: Prof. Dr. João B. Calixto (UFSC, Cienp)
- 2019 Second Senior Pharmacologist Award Recipient: Fernando de Queiroz Cunha (USP-RP)

The rules can be seen at:

http://www.sbfte.org.br/edital-para-o-premio-farmacologista-senior-uma-realizacao-sbfte-e-laboratorio-ache/

Keynote Speaker: Sergio Ferreira Lecture/Closing Lecture

Senior Pharmacologist Award Recipient

Fernando de Queiroz Cunha is a full professor of the Department of Pharmacology of the Medical School of Ribeirao Preto, USP. He works in the field of immunopharmacology, investigating the pathophysiological mechanisms of inflammatory diseases, in particular, sepsis and rheumatoid arthritis. One of the main objectives of his studies is to discover new and potential pharmacological targets for the development of new drugs and / or

diagnostic tests for these diseases. Prof. Cunha is a member of the Academic of Sciences of the Developing World (TWAS), the Brazilian Academy of Science (ABC) and the Paulista Academy of Science (ACIESP). The Prof. Cunha has international scientific recognition and has published more than 500 articles in international journals, which have been cited more than 21,000 times. He has also great experience in training human resources, having trained over 50 masters and PhD students and supervised more than 10 post-doctors. Prof. Cunha studies on sepsis described the molecular mechanisms that explain why septic patients develop hypotension non-responsive to vasoconstrictor treatment and also, they do not control efficiently the microbe's infections. These studies allowed the group to initiate a new project aimed to development new drugs aimed to prevent the cardiovascular hyporresponsivess to vasoconstrictors and also to prevent the immunosuppression, events that aggravate sepsis. More recently the group of Prof. Cunha described an important mediator who plays a key role in organ damage during sepsis. This mediator is called NET (Neutrophil Extracellular Traps) and is released during sepsis by the neutrophils and causes lesions in the lungs, heart, liver and kidneys. The group also demonstrated that newborns are more susceptible to sepsis because they produce high concentrations of NETs compared to adults. These studies support the use of drugs that inhibit NETs to prevent injuries of the vital organs and consequently reducing the sepsis-induced death. Among the Prof. Cunha studies in the area of Rheumatoid Arthritis (RA) include those that describe the mechanisms involved in the resistance of a group of patients with RA to methotrexate (MTX) treatment. MTX is used worldwide as a first-line strategy in the treatment of RA. However, about 30-40% of patients do not respond to treatment, and it is only possible to determine therapeutic efficacy after 4-6 months of continuous use of the MTX. When the therapeutic response is not adequate, non-responders present progressive tissue damages in the joints, which are irreversible, impairing the movements and locomotion of the patients. However, these lesions could be attenuated with the administration of other effective treatments for the disease for patients resistant to MTX. The research of the Prof. Cunha group identified a bio-marker capable of predicting the therapeutic efficacy of MTX before starting treatment. The test is based on expression on the surface of regulatory T cells (Tregs) of a molecule involved in the production of adenosine, the CD39 / ENTPD1 ectoenzyme. UR-MTX patients have a reduction of this molecule even before the start of MTX treatment. Therefore, in the near future all patients newly diagnosed with RA will be able to perform the test through a diagnostic kit that has been developed in collaboration with the productive sector.

José Ribeiro do Valle Award First Place Winner History

1998: Maria Martha Campos (UFSC; Adviser: João Batista Calixto)

- 1999: José Eduardo da Silva Santos (UFSC; Adviser: Jamil Assreuy)
- 2000: Ana Paula V. Dantas (USP-SP; Adviser: Maria Helena Catelli de Carvalho)
- 2001: Liliam Fernandes (USP-SP; Adviser: Maria Helena Catelli de Carvalho)
- 2002: Isaias Gleizer (USP-SP; Adviser: Cristoforo Scavone)
- 2003: Juliano Ferreira (UFSC; Adviser: João Batista Calixto)
- 2004: João Alfredo de Moraes (UERJ; Adviser: Thereza Christina Barja-Fidalgo)
- 2005: Tiago Chiavegatti (Unifesp-EPM; Adviser: Rosely O. Godinho)
- 2006: Ana Letícia G. Cabral Maragno (USP-RP; Adviser: Marcelo Damário Gomes)
- 2007: Maria Fernanda de Paula Werner (UFSC; Adviser: Giles A. Rae)
- 2008: Ana Luiza Andrade de Paula Lopes (Unifesp-EPM; Adviser: Rosely O. Godinho)
- 2009: Silvio Manfredo Vieira (USP-RP; Adviser: Fernando de Q. Cunha)
- 2010: Vanessa Olzon Zambelli (Instituto Butantan; Adviser: Yara Cury)
- 2011: Tatiana Paula Teixeira Ferreira (Fiocruz; Adviser: Patrícia Machado Rodrigues e Silva)
- 2012: Maíra Assunção Bicca (UFSC; Adviser: João Batista Calixto)
- 2013: Jaqueline Raymondi Silva (USP-RP; Adviser: Fernando de Q. Cunha)
- 2014: Jhimmy Talbot (USP-RP; Adviser: Fernando de Q. Cunha)
- 2015: Daniele Maria Ferreira (UFPR; Adviser: Maria Fernanda de Paula Werner)
- 2016: Gabriela S Kinker (USP, Adviser: Pedro Augusto Carlos Magno Fernandes)
- 2017: Fernando Olinto Carreño (UFRGS, Adviser: Teresa C. Dalla Costa)
- 2018 Bruna da Silva Soley (UFPR, Adviser: Daniela de Almeida Cabrini)

José Ribeiro do Valle Award – 2019 Finalists

Franciele Franco Scarante

BSc in Biomedicine – UFPR (2010-2015) MSc in Pharmacology – USP-RP 2016-2018 PhD student in Pharmacology – USP-RP Adviser: Alline Cristina de Campos

Douglas da Silva Prado

BSc in Nursery UFS (2009-2013) MSc in Biological Science (Pharmacology) – USP-RP (2014-2016) PhD student in Biological Science (Pharmacology) – USP-RP Adviser: José Carlos Farias Alves Filho

Natalia Barreto da Silva Ribeiro

BSc in Biological Science IFRJ (2011-2015) MSc in Cellular and Molecular Biology – Fiocruz (2016-2018) PhD student in Cellular and Molecular Biology – Fiocruz Adviser: Patrícia Machado Rodrigues e Silva

Kassiano dos Santos Sousa BSc in Biological Sciende – UFPB (2008-2013) MSc in Biological Sscience (Zoology) – (2013-2015) PhD student in Science (Physiology) – USP-SP Adviser: Regina P. Markus

Irismara Sousa Silva Bsc in Biomedicine – UFPI (2010-2014) MsC in Pharmacology UFPI (2015 – 2016) PhD student in Biological Science (Pharmacology and Physiology) –UFMG Adviser: André Klein

About SBFTE Jovem

SBFTE Jovem, founded in 2013, is a Committee of the Brazilian Society of Pharmacology and Experimental Therapeutics (SBFTE). The Committee is composed of young Pharmacologists members of SBFTE, working in association with the SBFTE Board of Directors. Our mission is to create a permanent political-scientific forum dedicated to undergraduate, graduate students, Post-Docs, as well as young investigators and Junior faculty members of SBFTE to discuss scientific topics related to Pharmacology in order to promote the development of early-career investigators, stimulating the

participation, insertion and collaboration of our members into the activities of the Society. This year, SBFTE Young will promote two activities during the 51st Brazilian Congress of Pharmacology and Experimental Therapeutics. The first activity, *Doutores na Indústria* (Ph.D. in the Industry: Different areas of practice) is a roundtable to open a discussion about opportunities to Brazilian early-career scientists regarding innovation, new challenges in science, how to engage into carriers in the industry or any other relevant opportunities that are beyond scholar-driven carriers. This section is scheduled for September 25th, 2019 from 1:30 pm to 3:30 pm. The second activity, "Meeting with the Pharmacologist" is scheduled for September 26th, 2019 from 12:10 pm to 01:20 pm. This session provides the opportunity to trainees and young scientists to engage into an active discussion with senior scientists about any topic of interest related to building a strong career in Science and Pharmacology, such as challenges in getting funding, establishing a research group, choosing and being a good mentor, as well as topics of their area of expertise.

In addition to the two activities, the Committee engages into relevant public awareness of science by promoting activities in local public schools of Maceió/AL and hosting several students in the activities along with the Congress of SBFTE. We invite all the early-career attendees of the Congress and young professionals to participate and support SBFTE Jovem's activities in the 51st SBFTE Congress at Maceió/AL.

SBFTE Young Committee

Eduardo Koji Tamura (UESC) Fábio Cardoso Cruz (Unifesp-EPM) João Alfredo de Moraes (UFRJ) Sanseray da Silveira Cruz Machado (USP-SP) Simone Regina Potje (USP-RP)

Sociedade Brasileira de Farmacologia e Terapêutica Experimental (SBFTE) Executive Secretary http://www.sbfte.org.br sbfte@sbfte.org.br

Program at a Glance					
	23/09/19 (Monday)	24/09/19 (Tuesday)	25/09/19 (Wednesday)	26/09/19 (Thursday)	27/09/19 (Friday)
		Venue	Venue	Venue	Venue
08h00		Secretariat	Secretariat	Secretariat	Secretariat
		Opening	Opening	Opening	Opening
08h00			Courses	Courses	Courses
8:00h		Promoting Pharmacology in Primary Public Schools			
09h00			Lectures	Lectures	Lectures
09h00		Meeting of the SBFTE Board and Deliberative Council			
09h50			Coffee-break	Coffee-break	
10h00					Poster Session 2
10h10			Symposia	Symposia	
12h00		Lunch			
			Lunch	Lunch	Closing Lecture
12h15			SBFTE Assembly	Meet the Professor	
			Technical Lecture	Roundtable	
13h00		Meeting Permanent Forum of Postgraduation Courses in Pharmacology			
13h15					Closing Ceremony
13h30			Symposia/	Symposia/	
14h00	Satellite courses	Pre-congress Courses	Roundtables	Roundtables	
15h00	Coffee-break	Courses			
15h20		Roundtable			
15h20		noundtable	Coffee-break	Coffee-break	
15h50			Lectures	conce break	
15h50 16h00			LUCIUIES	Symposia	
	Meeting Clinical			Symposia	
16h30	Pharmacology in				
	Postgraduation				

51st Brazilian Congress of Pharmacology and Experimental Therapeutics

	Courses in Pharmacology				
16h50			Poster Session 1		
18h00				Meeting of the N-NE-CW Region Pharmacology Network SBFTE Young Assembly	
18h30		Opening Session			
19h30		Opening Lecture			
20h30		Cocktail	Special Dinner by Adhesion		
21h00				Get together party	

Scientific program

		23/09/2019 (Monday)
14h00-17h00	Satellite courses – Hotel Ponta Verde - Maceió	
Água Viva Room	• 15h00-15h50	Class 2: New tools to assess neuronal ensembles in behaviors (Novas ferramentas para avaliar conjuntos neuronais em comportamentos) Fabio Cardoso Cruz (Unifesp-EPM)
	• 15h50-16h10	Coffee break
	• 16h10-17h00	Class 3: In vitro <i>and</i> in vivo <i>approaches to TBI</i> (<i>Abordagens</i> in vitro <i>e</i> in vivo <i>para o estudo do</i> <i>TCE</i>)
		Bonnie Firestein (Rutgers University, USA)
	 Pharmacogenomics (Farmacogenômica: Chair: Guilherme Su 14h00-14h50 	Status Atual e Perspectivas)
Caravela Room	• 15h00-15h50	Class 2: Pharmacogenomics: Current status (Farmacogenômica: Status atual) Guilherme Suarez Kurtz (INCa)
	15h50-16h1016h10-17h00	Coffee break Class 3: Pharmacogenomics: Clinical implementation (Farmacogenômica: Implementação Clínica) Guilherme Suarez Kurtz (INCa)

	24/00/2010 (Tuesday)	
	24/09/2019 (Tuesday) SBFTE e Divulgação de Farmacologia na Escola Pública (Promoting	
08h00-15h00	Pharmacology in Primary Public Schools in Maceió) Escola Estadual Theotônio Vilela Brandão (4 Turmas Ensino Médio (Turnos Manhã e Tarde) Chairs: André S. Pupo (Unesp-Botucatu) / Emiliano Barreto (UFAL) / SBFTE Young Committee	
08h00	Venue Secretariat and SBFTE Secretariat Opening	
09h00-12h00 VIP II Room	Meeting of the Board of SBFTE Directors and Deliberative Council (Council and Directory Board Members only)	
12h00-13h00	Lunch	
13h00-15h00 Pajuçara Room	Meeting of SBFTE Permanent Forum of Postgraduation Courses in Pharmacology (only for Heads of Postgraduation Courses in Pharmacology, Deliberative Council and Society Board)	
14h00-17h00	Pre-congress Courses	
Jatiuca Room	 Methods for Cardiorenal Ethnopharmacological Research (Métodos para a pesquisa etnofarmacológica cardiorrenal) Chair: Arquimedes Gasparotto Junior (UFGD) Class 1: Ethnobotanical, pharmacognostic, phytochemical and toxicological aspects as an initial step for cardiorenal ethnopharmacological research (Aspectos etnobotânicos, farmacognósticos, fitoquímicos e toxicológicos como etapa inicial para a pesquisa etnofarmacológica cardiorrenal) Arquimedes Gasparotto Junior (UFGD) Class 2: Experimental techniques in animal models of hypertension, atherosclerosis, heart failure and acute myocardial infarction (Técnicas experimentais em modelos animais de hipertensão arterial sistêmica, aterosclerose, ICC e infarto agudo do miocárdio) Arquimedes Gasparotto Junior (UFGD) Class 3: Cardiovascular disease study models associated with multiple risk factors (Modelos de estudo de doença cardiovascular associados à múltiplos fatores de risco) Arquimedes Gasparotto Junior (UFGD) 	
Ipioca Room	Zebrafish as an Experimental model in Pharmacology (Zebrafish como um Modelo Experimental em Farmacologia) Chair: Adriana Ximenes da Silva (UFAL)	

15h00-15h20	 Class 1: Understanding Zebrafish creation and management (Entendendo a criação e o gerenciamento de Zebrafish) Monica Valdyrce dos Anjos Lopes Ferreira (IBu) Class 2: The Zebrafish as a model for nociception studies (O Zebrafish como modelo para estudos de nocicepção) Adriana Rolim Campos Barros (Unifor) Class 3: Zebrafish as screening model for detecting toxicity and gabaergic drugs efficacy (Zebrafish como modelo de triagem para a detecção de toxicidade e eficácia de drogas gabaérgicas) Adriana Ximenes da Silva (UFAL)
131100-131120	Coffee Break
15h20-16h30	Roundtable
Pajuçara Room	 Animal Experimentation: Legislation and its Developments (Experimentação Animal: legislação e seus Desdobramentos) Chair: Maria Christina Werneck Avellar (Unifesp-EPM) Concea and its role as legislator for animal experimentation (Concea e seu papel legislador para a Experimentação Animal) Renata Mazaro e Costa (UFG, CONCEA/MCTIC Coordinator) The future of Lab animal facilities for the next 20 years (Biotério do futuro e perspectivas para os próximos 20 anos) Marcel Frajblat (UFRJ)
16h30-17h30	Meeting - Clinical Pharmacology in Postgraduation Courses in Pharmacology (only for Heads of Postgraduation Courses in Pharmacology)
Pajuçara Room	Chair: Guilherme Suarez Kurtz (INCa)
18h30-19h30 Gustavo Leite Theater	Opening Session
19h30-20h20 Gustavo Leite	Opening Lecture Regenerative Pharmacology – Drugs that Enhance Bone Healing through the Mobilization of Mesenchymal Stem Cells
Theater	Sara Margaret Rankin (Imperial College, UK) Introduced by Marco Aurélio Martins (Fiocruz-RJ)

	25/09/2019 (Wednesday)
08h00-08h50	Courses
Jatiuca Room	 The Importance of Time Factor in Pharmacology: From Receptor to Therapeutic Effect (A Importância do Fator Tempo em Farmacologia: Do Receptor ao Efeito Terapêutico) Chair: François G. Noël (UFRJ) Class 1: Kinetics of drug-receptor interaction and residence time (Cinética da interação fármaco-receptor e tempo de residência) François Noël (UFRJ)
Ipioca Room	 Statistics for Pharmacologists (Estatística para Farmacologistas) Chair: Leandro Jose Bertoglio (UFSC) Class 1: On the selection of the appropriate statistical test to analyze my experimental data (Como selecionar o teste estatístico apropriado para analisar meus dados experimentais?) Leandro Jose Bertoglio (UFSC)
Pajuçara Room	 The Challenge of Research with Laboratory Animal: Rules, Management and Welfare (O Desafio do Uso de Animais no Laboratório de Pesquisa: Regras e Cuidados do Bem-Estar dos Animais) Chair: Paulo de Assis Melo (UFRJ) Class 1: CEUA: Villain or partner? How to approve a CEUA project? (CEUA: Villa ou parceira? Como aprovar um projeto da CEUA?) Marcel Frajblat (UFRJ)
09h00-09h50	Lectures
Jatiuca Room	New Strategies for Discovery and Pharmacological Development of Therapeutic Antibodies João Gonçalves (University of Lisbon, Portugal) Introduced by Claudia do Ó Pessoa (UFC)
Ipioca Room	Zebrafish Disease Models for High Throughput Screens in Drug Development Xiao-Yan Wen (University of Toronto, Canada) Introduced by Adriana Rolim Campos Barros (Unifor)
09h50-10h10	Coffee-break
10h10-12h10	Symposia/Oral Communication
Drug development: Hydrogen Sulfide-Based Drugs for Pair Jatiuca Room Inflammation Chair: John L Wallace (University of Calgary, Canada)	

effectiveness John L Wallace (University of Calgary, Canada) Biofilm control: A key for better treatments? Nathalie Vergnolle (INSERM, France) • The impact of nitric oxide and hydrogen sulfide in periodontal and vascular inflammation Marcelo N. Muscará (USP-SP) • CO1: 04.022 Dsatinib, a tyrosine kinase inhibitor, down- regulates airway inflammation and lung remodeling in a mouse model of glucocorticoid resistant asthma_Santana ACC ¹ , Serra MF ¹ , Pimentel ADS ¹ , Arantes ACS ¹ , Abreu SC ² , Xisto DG ² , Martins PMRS, Rocco PRM ² , Martins MA ¹ Fiocruz, ² UFRI • CO2: 04.013 Development and challenges of topical mitochondrial target hydrogen sulphide based-nanocarrier system for burn skin wound. Cerqueira ARA ¹ , Matos JKRM ¹ , Spadari CC ¹ , Teixeira SA ¹ , Whiteman M ² , Muscará MN ¹ , Lopes L ¹ , Costa SKP ^{1 1} ICB-USP, ² University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) • Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) • Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) • Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Licio Augusto Velloso (Unicamp) • CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins IDO ¹ , Ferreira SS ¹ , Oliveira MA ² , Tsujita M ¹ , Casagrande FB ¹ , Gomes E ² , Russ		• H ₂ S-based anti-inflammatories: GI-safe and enhanced
 Biofilm control: A key for better treatments? Nathalie Vergnolle (INSERM, France) The impact of nitric oxide and hydrogen sulfide in periodontal and vascular inflammation Marcelo N. Muscará (USP-SP) CO1: 04.022 Dsatinib, a tyrosine kinase inhibitor, down- regulates airway inflammation and lung remodeling in a mouse model of glucocorticoid resistant asthma_Santana ACC¹, Serra MF¹, Pimentel ADS¹, Arantes ACS¹, Abreu SC², Xisto DG², Martins PMRS, Rocco PRM², Martins MA ¹Fiocruz, ²UFRI CO2: 04.013 Development and challenges of topical mitochondrial target hydrogen sulphide based-nanocarrier system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP^{1 1}ICB-USP, ²University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Licio Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCr-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹Fiocruz, ²The William Harvey 		effectiveness
 Nathalie Vergnolle (INSERM, France) The impact of nitric oxide and hydrogen sulfide in periodontal and vascular inflammation Marcelo N. Muscará (USP-SP) CO1: 04.022 Dsatinib, a tyrosine kinase inhibitor, down- regulates airway inflammation and lung remodeling in a mouse model of glucocorticoid resistant asthma_Santana ACC¹, Serra MF¹, Pimentel ADS¹, Arantes ACS¹, Abreu SC², Xisto DG², Martins PMRS, Rocco PRM², Martins MA ¹Fiocruz, ²UFRJ CO2: 04.013 Development and challenges of topical mitochondrial target hydrogen sulphide based-nanocarrier system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP¹¹ICB-USP, ²University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a gluccocriticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS³, Flower RI², Perretti M², Martins MA¹, Martins PMRS¹Fiocruz, ²The William Harvey 		
 The impact of nitric oxide and hydrogen sulfide in periodontal and vascular inflammation Marcelo N. Muscará (USP-SP) CO1: 04.022 Dsatinib, a tyrosine kinase inhibitor, down-regulates airway inflammation and lung remodeling in a mouse model of glucocorticoid resistant asthma_Santana ACC¹, Serra MF¹, Pimentel ADS¹, Arantes ACS¹, Abreu SC², Xisto DG², Martins PMRS, Rocco PRM², Martins MA ¹Fiocruz, ²UFRJ CO2: 04.013 Development and challenges of topical mitochondrial target hydrogen sulphide based-nanocarrier system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP^{1 1}ICB-USP, ²University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal <i>T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes</i> Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP, ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower R¹, Perretti M², Martins PMRS¹ ¹Fiocruz, ²The William Harvey 		
 and vascular inflammation Marcelo N. Muscará (USP-SP) CO1: 04.022 Dsatinib, a tyrosine kinase inhibitor, down- regulates airway inflammation and lung remodeling in a mouse model of glucocorticoid resistant asthma. Santana ACC¹, Serra MF¹, Pimentel ADS¹, Arantes ACS¹, Abreu SC², Xisto DG², Martins PMRS, Rocco PRM², Martins MA ¹Fiocruz, ²UFRJ CO2: 04.013 Development and challenges of topical mitochondrial target hydrogen sulphide based-nanocarrier system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP¹⁻¹ICB-USP, ²University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower R¹, Perretti M², Martins MA¹, Martins PMRS¹⁻¹Fiocruz, ²The William Harvey 		
 Marcelo N. Muscará (USP-SP) CO1: 04.022 Dsatinib, a tyrosine kinase inhibitor, down-regulates airway inflammation and lung remodeling in a mouse model of glucocorticoid resistant asthmaSantana ACC¹, Serra MF¹, Pimentel ADS¹, Arantes ACS¹, Abreu SC², Xisto DG², Martins PMRS, Rocco PRM², Martins MA ¹Fiocruz, ²UFRI CO2: 04.013 Development and challenges of topical mitochondrial target hydrogen sulphide based-nanocarrier system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP^{1 1}ICB-USP, ²University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RI², Perretti M², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²The William Harvey 		
 CO1: 04.022 Dsatinib, a tyrosine kinase inhibitor, down-regulates airway inflammation and lung remodeling in a mouse model of glucocorticoid resistant asthma_Santana ACC¹, Serra MF¹, Pimentel ADS¹, Arantes ACS¹, Abreu SC², Xisto DG², Martins PMRS, Rocco PRM², Martins RA ¹Fiocruz, ²UFRJ CO2: 04.013 Development and challenges of topical mitochondrial target hydrogen sulphide based-nanocarrier system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP¹ ICB-USP, ²University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Licio Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RI², Perretti M², Martins MA¹, Martins PMRS^{1 1}Fiocruz, ²The William Harvey 		
Ipioca Room		
 Ipioca Room Ipioca Room CO2: 04.013 Development and challenges of topical mitcohondrial target hydrogen sulphide based-nanocarrier system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP^{1 1}ICB-USP, ²University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Licio Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RI², Perretti M², Martins MA¹, Martins PMRS^{1 1}Fiocruz, ²The William Harvey 		
 MF¹, Pimentel ADS¹, Arantes ACS¹, Abreu SC², Xisto DG², Martins PMRS, Rocco PRM², Martins MA ¹Fiocruz, ²UFRJ CO2: 04.013 Development and challenges of topical mitochondrial target hydrogen sulphide based-nanocarrier system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP¹ ¹ICB-USP, ²University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²The William Harvey 		
 Martins PMRS, Rocco PRM², Martins MA ¹Fiocruz, ²UFRJ CO2: 04.013 Development and challenges of topical mitochondrial target hydrogen sulphide based-nanocarrier system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP¹¹ICB-USP, ²University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal <i>T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes</i> Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JD0¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²The William Harvey 		
 CO2: 04.013 Development and challenges of topical mitochondrial target hydrogen sulphide based-nanocarrier system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP^{1 1}ICB-USP, ²University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Licio Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹¹Fiocruz, ²The William Harvey 		
 mitochondrial target hydrogen sulphide based-nanocarrier system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP^{1 1}ICB-USP, ²University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS^{1 1}Fiocruz, ²The William Harvey 		
 system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP^{1 1}ICB-USP, ²University of Exeter Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JD0¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RI², Perretti M², Martins MA¹, Martins PMRS^{1 1}Fiocruz, ²The William Harvey 		
Spadari CC ¹ , Teixeira SA ¹ , Whiteman M ² , Muscará MN ¹ , Lopes L ¹ , Costa SKP ^{1 1} ICB-USP, ² University of ExeterHormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz)Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz)Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz)Ipioca RoomCO1: O1: O4.046 Ingurstation Lício Augusto Velloso (Unicamp)CO1: CO1: CO2: O4.046 O4.020 Amritis JDO ¹ , Ferreira SS ¹ , Oliveira MA ² , Tsujita M ¹ , Casagrande FB ¹ , Gomes E ² , Russo M ² , Lima WT ² , Nunes FPB ¹ ¹ FCF-USP; ² ICB-USPCO2: CO2: O4.020 O4.020 O4 mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT ¹ , Arantes ACS ¹ , Flower RJ ² , Perretti M ² , Martins MA ¹ , Martins PMRS ^{1 1} Fiocruz, ² The William Harvey		
L1, Costa SKP1 1ICB-USP, 2University of ExeterHormones and InflammationChair: Vinicius de Frias Carvalho (Fiocruz)• Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz)• Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz)• Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp)• CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO1, Ferreira SS1, Oliveira MA2, Tsujita M1, Casagrande FB1, Gomes E2, Russo M2, Lima WT2, Nunes FPB1 1FCF-USP; 2ICB-USP• CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT1, Arantes ACS1, Flower RJ2, Perretti M2, Martins MA1, Martins PMRS1 1Fiocruz, 2The William Harvey		
 Hormones and Inflammation Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JD0¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹Fiocruz, ²The William Harvey 		
 Chair: Vinicius de Frias Carvalho (Fiocruz) Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JD0¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²The William Harvey 		
 Glucagon inhibits ovalbumin-induced lung inflammation and remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²The William Harvey 		
 remodeling Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS^{1 1}Fiocruz, ²The William Harvey 		
 Vinicius de Frias Carvalho (Fiocruz) Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹Fiocruz, ²The William Harvey 		
 Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²The William Harvey 		
 diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JD0¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹Fiocruz, ²The William Harvey 		
 type 1 autoimmune diabetes Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JD0¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹¹Fiocruz, ²The William Harvey 		
 Wilson Savino (Fiocruz) Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JD0¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹Fiocruz, ²The William Harvey 		
 Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹Fiocruz, ²The William Harvey 		
 Ipioca Room expressed in the hypothalamus and control energy homeostasis and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹Fiocruz, ²The William Harvey 		
 Ipioca Room and inflammation Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹Fiocruz, ²The William Harvey 		
 Lício Augusto Velloso (Unicamp) CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²The William Harvey 		
 CO1: 04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²The William Harvey 	Ipioca Room	
 inflammation and increases pulmonary resistance in diabetic mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²The William Harvey 		
 mice Martins JDO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²The William Harvey 		
 Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²The William Harvey 		
 ¹FCF-USP; ²ICB-USP CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²The William Harvey 		
 CO2 04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA¹, Martins PMRS^{1 1}Fiocruz, ²The William Harvey 		
(AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT ¹ , Arantes ACS ¹ , Flower RJ ² , Perretti M ² , Martins MA ¹ , Martins PMRS ^{1 1} Fiocruz, ² The William Harvey		
inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT ¹ , Arantes ACS ¹ , Flower RJ ² , Perretti M ² , Martins MA ¹ , Martins PMRS ^{1 1} Fiocruz, ² The William Harvey		
(HDM) in mice. Ferreira TPT ¹ , Arantes ACS ¹ , Flower RJ ² , Perretti M ² , Martins MA ¹ , Martins PMRS ^{1 1} Fiocruz, ² The William Harvey		
M ² , Martins MA ¹ , Martins PMRS ¹ ¹ Fiocruz, ² The William Harvey		

Pajuçara Room	 The Pharmacological Bases of Drug Addiction Chair: Rosana Camarini (USP-SP) Interaction of biperiden on alcohol-seeking behaviors. Rodrigo Molini Leão (UFBA) Synaptic plasticity mechanism commom to learning and alcohol disorder Karina Possa Abrahão (Unifesp-EPM) CRF, stress and addiction Tarciso Tadeu Miguel (UFU) Aging and Neuroprotection: Effects of klotho protein in energetic metabolism, Na,K-ATPase signaling and adaptative response in Central Nervous System Cristoforo Scavone (USP-SP)	
12h10-13h20	Lunch	
12h15-13h20	Jatiuca Room	Pajuçara Room
	SBFTE Assembly with Lunch Box	Technical Lecture with lunch box Magnetic 3D cell culture applied to drug Discovery and preclinical tests Rafaela Mendonça Baggio (Greiner Bio-One)
13h30-15h30	Symposia/Roundtables	
Jatiuca Room	 New perspectives and Opportunities for Redox Based Therapy Chair: Lúcia Rossetti Lopes (USP-SP) Chemogenetic approaches to dissect redox stress pathways in the cardiovascular system Thomas Michel (Harvard Medical School, USA) Vascular thiol isomerases: Novel redox mechanisms and therapeutic opportunities Francisco Rafael Martins Laurindo (InCor-HC-FMUSP) Protein Disulfide Isomerase: A novel therapeutic target to regulate Nox1 signaling in atherosclerosis. Lucia Rossetti Lopes (USP-SP) CO1: 06.052 Potential Effects of Matrix Metalloproteinase (MMP)-2 on the Sarcoplasmic Reticulum Calcium ATPase (SERCA) in Hypertension-Induced Vascular Dysfunction. Silva PHL¹, Mello MMB¹, Parente JM¹, Schulz R², Castro MM^{1 1}USP, ²University of Alberta 	
Ipioca Room	Ultrasonic Vocalizations: A new tool for Behavioural Pharmacology Chair: Roberto Andreatini (UFPR)	

	 Psychopharmacology of drugs of abuse and ultrasonic vocalizations by rodents
	Helena Maria Tannhauser Barros (UFCSPA)
	• Ultrasonic vocalizations as a maker for affective states in
	animal models of mood disorders
	Roberto Andreatini (UFPR)
	• Characterization of ultrasonic vocalizations in different pain
	states and social contexts in rats.
	Juliana Geremias Chichorro (UFPR)
	 CO1: 03.021 Cannabidiol attenuates orofacial dyskinesia and cognitive impairment induced by haloperidol in mice via PPARγ
	receptors Sonego AB, Prado DS, Guimaraes FS FMRP-USP
	• CO2: 03.008 Nociceptin/Orphanin FQ receptor signaling
	modulates resilience to stress in mice. Holanda VAD ¹ , Salvatore
	P, Azevedo JG ² , Finetti L ² , Calo G ² , Ruzza C ² , Gavioli EC ^{1 1} UFRN
	² Universidade de Ferrara
	PhD in Industry: Different Areas of Practice (Doutores na Indústria: Diferentes Áreas de Atuação)
	Chair: SBFTE Young Committee
	• The challenge of career-changing: From basic science to drug
	development (O desafio da mudança de carreira: Da ciência
	básica ao desenvolvimento de fármacos)
	Gabriela Westerlund (Biozeus Biopharmaceutical)
	• Challenges for the development of new drugs to treat tropical
Pajuçara Room	and neglected disease: The importance of cooperation between
	academia and industry. (Desafios para o desenvolvimento de
	novos fármacos para tratar doenças tropicais e negligenciadas:
	A importância da cooperação entre academia e indústria)
	Anna Caroline Campos Aguiar (USP-São Carlos)
	• Public awareness of science: How to attract a bigger audience
	to what we discover (Conscientização pública da ciência: como
	atrair um público maior para o que descobrimos.)
	Fabrício Alano Pamplona (Mind the Graph)
15h30-15h50	Coffee-break
15h50-16h40	Lectures
	Use of 3D Structure in Quest for Pharmacological Modulators of the
Jatiuca Room	Na,K-ATPase Activity
	Natalya U. Fedosova (Aarhus University, Denmark)
	Introduced by Luis Eduardo Menezes Quintas (UFRJ)
	A Pluridimensional View of GPCR Biased Agonism: Insights from
Ipioca Room	Synthetic and Endogenous Agonists
	Claudio M. Costa-Neto (USP-RP)

51st Brazilian Congress of Pharmacology and Experimental Therapeutics

	Introduced by François G. Noel (UFRJ)		
16h50-18h50	Poster Session 1		
	01 Cellular and Molecular Pharmacology (01.001-01.009)		
	02. Neuropharmacology (02.001-02.018)		
	03. Psychopharmacology (03.001-03.014)		
	04. Inflammation and Immunopharmacology (04.001-04.029 e 04.047)		
	05. Pain and Nociception Pharmacology (05.001-05.012 e 05.016)		
	06. Cardiovascular and Renal Pharmacology (06.001-06.029 e 06.030, 06.035 e 06.037)		
	07. Endocrine, Reproductive and Urinary Pharmacology (07.001- 07.011)		
	08. Respiratory and Gastrointestinal Pharmacology (08.001- 08.014 e 08.016-09.069)		
	09. Natural Products and Toxinology (09.001-09.042, 09.045 e 09.068-09.069)		
	10. Cancer Pharmacology (10.001-10.014)		
	11. Clinical Pharmacology, Pharmacokinetics, Pharmacogenomics and Toxicology (11.001-11.010)		
	12. Drug Discovery and Development (12.001-12.009)		
14. Pharmacology: Other (14.001-14.010, 14.012 e 14			
	Special Dinner by Adhesion		
20h30-10h30	Anamá Restaurant		
	Avenida. Silvio Carlos Viana, 2501 – Ponta Verde *Payment and information at the registration desk		

08h00-08h50	Courses
Jatiuca Room	 The importance of time factor in Pharmacology: From Receptor to Therapeutic Effect (A Importância do Fator Tempo em Farmacologia: do Receptor ao Efeito Terapêutico) Chair: François G. Noël (UFRJ) Class 2: Kinetics of the activation of signaling cascades and functional selectivity (Cinética da ativação de cascatas de sinalização e seletividade funcional) Claudio M. Costa Neto (USP-RP)
Ipioca Room	 Statistics for Pharmacologists (Estatística para Farmacologistas) Chair: Leandro Jose Bertoglio (UFSC) Class 2: Why the p-value matters? (Por que o valor de "p" importa?) Janaina Menezes Zanoveli (UFPR)
Pajuçara Room	 The Challenge of Research with Laboratory Animal: Rules, Management and Welfare (O Desafio do Uso de Animais no Laboratório de Pesquisa: Regras e Cuidados do Bem-Estar dos Animais) Chair: Paulo de Assis Melo (UFRJ) Class 2: Use of animals of different sizes in the production of immunobiologicals and drugs (Uso de animais de diferentes portes na produção de imunobiológicos e fármacos) Marcelo Abrahão Strauch (IVB)
09h00-09h50	Lectures
Jatiuca Room	History of Pharmacology: From the origins to Modern Era François G. Noël (UFRJ) Introduced by Claudio M. Costa-Neto (USP-RP)
Ipioca Room	Peripubertal Stress and Hippocampal Damage as Risk Factors in the Pathophysiology of Schizophrenia: Implications for Treatment and Prevention Anthony A. Grace (University of Pittsburgh USA) Introduced by Gilda Angela Neves (UFRJ)
09h50-10h10	Coffee-break
10h10-12h10	Symposia/Oral communication
Jatiuca Room	Pharmacological Modulation of Pain and Inflammation in Chronic Disease Chair: Jason McDougall (Dalhousie University, Canada)

	 Anti-inflammatory and analgesic properties of cannabis constituents in the treatment of arthritis Jason McDougall (Dalhousie University, Canada) Neutrophils as a source of auto-antigens in Lupus: What is happening? Marc Pouliot (University of Laval, Canada) Peripheral macrophage activation drives pathological pain Thiago M. Cunha (USP-RP) CO1: 04.040 Protease-activated receptor (PAR)2 mediates LPS-induced pro-inflammatory repertoire in murine macrophages Barra A, Brasil AF, Florentino RM, Leite MF, Capettini LSA, Klein A UFMG CO2: 05.003 HUF-101, a cannabidiol analog, prevents mechanical and thermal allodynia in a chemotherapy-induced peripheral neuropathic pain model Silva N¹, Gomes Fl¹, Lopes A¹, Mechoulam R², Gomes F¹, Cunha TM¹, Guimaraes FS¹ ¹FMRP-USP, ²Hebrew University
lpioca Room	 Vascular Dysfunction: From Vascular Injury to Remodeling Chair: Cláudia Lúcia Martins Silva (UFRJ) Mechanistic Insights into Caveolin-1 depletion-dependent endothelial-to-mesenchymal transition Richard Minshall (University of Illinois at Chicago, USA) Perivascular adipose tissue and vascular dysfunction in sepsis Jamil Assreuy (UFSC) Endothelial cell – Macrophage crosstalk in vascular repair and remodeling Suellen D'Arc dos Santos Oliveira (University of Illinois at Chicago, USA) CO1: 06.041 IL-1RI contributes to endothelial dysfunction, vascular remodeling and oxidative stress in Angiotensin Il- induced hypertension. Fedoce AG, Pereira CA, Aguiar CAS, Parente JM, Gonzaga NDA, Tostes RC, Carneiro FS FMRP-USP
Pajuçara Room	 Neurometabolism, Inflammation and Brain Damage Chair: Isaias Glezer (Unifesp-EPM) Mitochondria dynamics and metabolism regulation Sabrina Diano (Yale School of Medicine, USA) Diet, Mitochondria and Energy Metabolism Alicia Kowaltowski (USP) Mitochondrial dysfunction and changes in high-energy compounds in different cellular models of hypoxia: Implication to Schizophrenia Tatiana Rosado Rosenstock (FCMSCSP)

	 Inflammatory signaling effects on neural progenitors proliferation and metabolism Isaias Glezer (Unifesp-EPM)
12h10-13h20	Lunch
12h10-13h20	Meet the Professor with lunch box
Ipioca Room	 Chair: Sanseray da Silveira Cruz-Machado (SBFTE Young Coordinator) Alicia Kowaltowski (USP-SP) Anthony A. Grace (University of Pittsburgh, USA) Marc Pouliot (University of Laval, Canada) Monika Schaefer-Korting (Freie Universität Berlin, Germany) Richard Minshall (University of Illinois, USA) Sabrina Diano (Yale School of Medicine, USA) Sara Margaret Rankin (Imperial College, UK) Susan Diana Brain (King's College, UK)
12h10-13h20	Roundtable with lunch box
Pajuçara Room	 New Criteria of Capes Evaluation: Perceptions and Directions in Pharmacology (Novos Critérios de Avaliação da Capes: Percepções e Direções na área de Farmacologia). Chair: Paulo César Ghedini (UFG) Capes Evaluation in Biological Sciences II: Relevance and Perspectives (Avaliação da Capes na Área Ciências Biológicas II: Relevância e Perspectivas) Adelina Martha dos Reis (UFMG, Coordinator CBII Capes)
13h30-15h30	Symposia
Jatiuca Room	 José Ribeiro do Valle Award Chair: Roberto César Pereira Lima Júnior (UFC) Franciele Franco Scarante 03.005 The anti-stress effects of the combination of Escitalopram and Cannabidiol in mice depends on anandamide levels in the prefrontal cortex. Scarante, FF¹, Vicente MA¹, Fuse EJ¹, Lopes VD², Aguiar RP³, Scomparin DS¹, Guimaraes FS¹, Campos AC¹ ¹FMRP-USP, ²FCFRP-USP, ³UEM Douglas da Silva Prado 04.033 ERK5 mediates TGF-6 signaling and shapes autoimmune inflammation. Prado, DS, Damasceno LEA, Ferreira RG, Rosa MH, Cunha TM, Cunha FDQ, Ryffel B, Waisman A, Alves-Filho JC FMRP Natalia Barreto da Silva Ribeiro

	<i>mice</i> . Ribeiro NBS, Capelozzi VL, Silva VM, Machado MP, Sa YAPJD, Arantes ACS, Martins PMRS, Martins MA Fiocruz
	 Kassiano dos Santos Sousa 04.034 Purinergic signaling converts N-acetylserotonin into the pineal darkness hormone. Sousa KS, Quiles CL, Ferreira ZFS, Markus RP USP Irismara Sousa Silva 04.008 A novel platelet-activating factor and protease-activated receptor (PAR)-2 network in lung inflammation in mice. Silva IS, Almeida AD, Lima Filho ACM, Braga WF, Capettini LSA, Leite JIA, Leite MF, Klein A UFMG
Ipioca Room	 Pharmacology of Natural Products: Challenges and Opportunities Chair: Luciano Augusto de Araújo Ribeiro (Univasf) Experimental and Neuropsychopharmacological Characterization of Natural Products with Epileptogenic, Anti- epileptogenic and Neuroprotective Actions Olagide Wagner de Castro (UFAL) Integrative metabolomics analysis of the Brazilian Biodiversity Norberto Peporine Lopes (USP-RP) Monoterpenes as possible tools for managing of chronic pain Lucindo Jose Quintans Junior (UFS) CO1: 09.017 Structural characterization of two beta-neurotoxins (MLL-Tx-I and MLL-Tx-II) from Micrurus lemniscatus (South American coralsnake) venom and their modulatory activity on SNARE-protein complex expression. Floriano RS¹, Panunto PC², Torres-Bonilla KA², Saénz-Suarez PA², Rocha T³, Fernandez J⁴, Silva Júnior NJ⁵, Rowan EG⁶, Lomonte B⁴, Hyslop S² ¹Unoeste; ²Unicamp, ³UFS, ⁴Universidad de Costa Rica, ⁵PUC-GO, ⁶University of Strathclyde CO2 09.006 Protective effect of Plumeria pudica Latex proteins on ethanol-induced gastric injury in mice. Souza BS, Moita LA, Sales ACS, Barbosa MS, Silva FDS, Sousa FBM, Medeiros JVR, Oliveira JS UFPI
15h30-15h50	Coffee-break
16h00-18h00	Symposia/Oral communication
Jatiuca Room	 New Pharmacological Approaches for Fibrosing Disorders Chair: Emiliano de Oliveira Barreto (UFAL) Influence of activation of the inflammasome pathway on tissue remodeling and fibrogenic activities Vincent Lagente (University of Rennes 1, France) Nanotechnology application on the treatment of pulmonary fibrosis
36 51st Brazilian	Congress of Pharmacology and Experimental Therapeutics

	 Patrícia Machado Rodrigues e Silva (Fiocruz-RJ) CO1: 04.005 <i>The effect of different prostaglandin F2α concentrations on mesenchymal stem cells</i> Santos ACA, Sartori T, Borelli P, Fock RA USP CO2: 04.036 Methyl cinnamate attenuates inflammatory and pathophysiological parameters in elastase-induced emphysema in mice. Carmo JOS¹, Nascimento LMPS¹, Correia ACC², Cartaxo TN¹, Ferro JNS¹, Barreto E^{1 1}UFAL, ²UFPE CO3: 04.044 <i>Role of toll-like receptor</i> (<i>TLR</i>)<i>3 in lung fibrosis triggered by silica particles in mice</i>. Sa YAPJ¹, Ferreira TPT¹, Ribeiro NBS¹, Correa AMC¹, Oliveira TAL¹, Alves-Filho JCF², Hogaboam C³, Martins MA¹, Martins PMRS^{1 1}Fiocruz, ²FMRP-USP, ³Cedars-Sinai CO4: 04.021 Probiotics increased lymphocytes subpopulations of CD3+CD4+, CD45+CD25+CCR6-, and CD45+CD25-CCR6+ cells in irinotecan-induced experimental steatohepatitis. Aragão KS¹, Melo A², Wong D², Fernandes C³, Gurgel D², Pereira M², Freitas
	JA ² , Almeida PRC ² , Lima-Junior RCP ² ¹ Estácio, ² UFC, ³ UECE
Ipioca Room	 The Pharmacological Role of Neuropeptides in Inflammation, Pain and Beyond Chair: Elizabeth S. Fernandes (Ceuma) / Marcelo N. Muscará (USP-SP) New insights into the role of TRP receptors in arthritis Susan D Brain (King's College, UK) Somatostatin sst4 receptor agonists, as a novel analgesic and antidepressant drug candidates Zsuzsanna Helyes (University of Pécs Medical School, Pécs, Hungary) Participation of TRPA1 in neuropathic pain mechanisms Gabriela Trevisan dos Santos (UFSM) Regulatory role of TRPA1 in the pathomechanism of experimental and human psoriasis Erika Pinter (University of Pécs Medical School, Hungary)
Pajuçara Room	 Main Challenges for Innovation in Pharmacology Chair: João Batista Calixto (UFSC) A Brief introduction on innovation in drug development in Brazil João Batista Calixto (UFSC) Challenges for the development of cannabinoid products in Brazil Fabrício Alano Pamplona (Mind the Graph) Rethinking preclinical drug research - Human based 3d tumor models as an example Monika Schaefer-Korting (Freie Universität, Germany)

	• EU-OPENSCREEN - An International Research Infrastructure initiative to facilitate Chemical Biology and early Drug Discovery Bahne Stechmann (EU-OPENSCREEN, Germany)		
18h00-19h00	Pajuçara Room	Ipioca Room	
Pajuçara Room	Meeting of the North-Northeast and Central West Region Pharmacology Network	SBFTE Young Assembly	
21h00-01h00	Get together party Maikai Av. Eng. Paulo Brandão Nogueira, 540 In the Meeting bag you will find an identification bracelet. Keep it to enter and during the Get Together Party		

08h00-08h50	Courses	
Jatiuca Room	 The Importance of time fator in Pharmacology: From Receptor to Therapeutic Effect (A Importância do Fator Tempo em Farmacologia: Do Receptor ao Efeito Terapêutico) Chair: François G. Noël (UFRJ) Class 3: Integrating pharmacokinetics and pharmacodynamics in vivo (Integrando farmacocinética e farmacodinâmica in vivo) Teresa Cristina Tavares Dalla Costa (UFRGS) 	
Ipioca Room	 Statistics for pharmacologists (Estatística para farmacologistas) Chair: Leandro Jose Bertoglio (UFSC) Class 3: Meta-analysis: Principles, applications and limitations (Meta-análise: princípios, aplicações e limitações) Cilene Lino de Oliveira (UFSC) 	
Pajuçara Room	 The Challenge of Research with Laboratory Animal: Rules, Management and Welfare (O Desafio do Uso de Animais no Laboratório de Pesquisa: Regras e Cuidados do Bem-Estar dos Animais) Chair: Paulo de Assis Melo (UFRJ) Class 3: Conflicts and adequacy of analgesia, anesthesia and euthanasia in the experimental design with animals (Conflitos e adequação de analgesia, anestesia e da eutanásia no projeto experimental com animais) Paulo de Assis Melo (UFRJ) 	
09h00-09h50	Lectures	
Jatiuca Room	Novel Targets for Therapeutic Intervention in Parkinson's Disease Tiago Fleming Outeiro (University Medical Center Goettingen, Germany) Introduced by Rui Daniel S. Prediger (UFSC)	
Ipioca Room	The End of Medicine as we Know It Ana Isabel Casas Guijarro (Maastrich University, Netherlands) Introduced by Fabiola Taufic Mónica Iglesias (Unicamp)	
10h00-12h00	Poster Session 2 with Coffee break	
	 Cellular and Molecular Pharmacology (01.010-01.018) Neuropharmacology (02.019-02.036) Psychopharmacology (03.015-03.027) Inflammation and Immunopharmacology (04.030-04.046 e 04.048-04.058) Pain and Nociception Pharmacology (05.013-05.025) 	

Poster session 1: 25/09/2019 (Wednesday)

01. Cellular and Molecular Pharmacology

01.001 Antineoplastic beta lapachona is not cytotoxic in low concentration in endothelial cells. Alves NM, Cruz VDSC, Graziani DG, Braga KMDSB, Paixão FMDP, Araújo EG UFG

01.002 Atorvastatin blocked UTP-induced metastatic prostate cancer cells to endothelial cells. Cardoso TC, Silva CLM UFRJ

01.003 Beta-blockers with moderate intrinsic sympathomimetic activity improve sepsis-induced myocardial dysfunction. Silva KPD¹, Júnior EDS², Baker J³, Cunha FQ⁴, Pupo AS ¹Unesp-Botucatu, ²UFRN, ³University of Nottingham, ⁴FMRP-USP

01.004 Stress-mediated systemic low-grade inflammation and its impact on male reproductive health. Freitas GA¹, Pinna GP², Scavone C¹, Avellar MCW^{3 1}ICB-USP, ²University of Illinois, ³Unifesp

01.005 Polarization of mesenchymal stem cells isolated from apical papilla human teeth with IFNy. Dagnino APA, Chagastelles PC, Medeiros RPD, Goldani E, Campos MM, Silva JB PUC-RS

01.006 Vitamin D increases dyslipidemia but does not enhance cardiovascular remodeling or oxidative stress on atherosclerotic and osteoporotic mice. ¹Prado AF, ¹Alves GM, ¹Anaissi AKM, Demachki S¹, Nascimento JLM¹, Macchi BDM¹, Ramos J², Gerlach RF², Issa JPM², Azevedo A^{2 1}UFPA, ²USP, FMRP-USP

01.007 Maxadilan, but not PACAP, triggers a disruption in endothelial barrier: Molecular mechanisms associated to changes in endothelial cell phenotype. Barja-Fidalgo TC¹, Nascimento-Silva VN¹, Rodrigues GRDS¹, Svensjö ES² ¹UERJ, ²UFRJ

01.008 Phenotypical and pharmacological differences evoked by *in vitro* aging of LLC- PK1 proximal tubule renal cells. Barros GMO, Silva ACAE, Quintas LEM UFRJ

01.009 In vitro Leishmanicidal Activity of New Carbamoyl-N-Aryl-Imine-Ureas against Leishmania Major. Santos HCN¹, Silva AE¹, Silva JFM¹, Silva JKS¹, Silva KCJ¹, Araújo MV¹, Oliveira GG¹, Avelar JLS², Barreiro EJDL², Lima LM², Moreira MSA^{1 1}UFAL; ²UFRJ

02. Neuropharmacology

02.001 Long and short-term effects of WIN55,212-2 and nicotine exposure during adolescence in mice. Gonçalves PFR, Nunes LED, Andrade BDS, Frederico N, Borges G, Castro NG, Neves GA UFRJ

02.002 Antioxidant and neuroprotective effects of Plumieride in the Hippocampus and Prefrontal Cortex of mice chronically exposed to corticosterone. Dalmagro AP¹, Camargo A², Zeni ALB², Silva RML¹, Malheiros A¹, Souza MM^{1 1}Univali, ²Furb

02.003 Cannabidiol attenuates the conditioned place aversion induced by naloxone-precipitated morphine withdrawal in mice. Souza AJ, Morais B, Gomes FV, Guimarães FS FMRP-USP

02.004 TRPV1 receptor antagonism induced a neuroprotective effect and rescued episodic and aversive memories in an animal model of Alzheimer's Disease. Silva EMF, Lagatta DC, Domingos LBD, Assis AB, Veras FP, Resstel L FMRP-USP

02.005 Pharmacological validation of a new animal model of depression in mice: A single subconvulsant dose of pilocarpine. Souza FMA¹, Neto JGS¹, Vieira MPS¹, Barros O¹, Souza GF¹, Correia WBZGB¹, Duarte FS², Lima TCM³, Duzzioni M^{1 1}UFAL, ²UFPE, ³UFSC

02.006 Neuroplasticity of the endocannabinoid system is associated with CBD anticonvulsant effects along a chronic protocol of epileptic seizures. Lopes WL, Silva Júnior RMP, Silva RAVS, Leite JPL, Cairasco NG USP

02.007 Neuroinflammatory response in NA, K-ATPase activity in allergic lung inflammation: putative involvement of female sex hormones. Lima GM, Umaña ER, Ribeiro MR, Leite JA, Lima WT, Scavone C ICB-USP

02.008 Cannabinoid microdoses reduces Alzheimer Disease symptoms in a 75 years old patient: A case study. Nascimento F¹, Martins-Gomes AC¹, Cury RMC¹, Soares FAS², Maia BHNS², Pamplona FA¹, Gomes-da-Silva E^{1 1}Unila, ²UFPR

02.009 Mental and neurological disorders as risk factors for periodontal diseases in institutionalized people. Ávila TV, Rabelo CC, Corrêa FOB, Pontes AEF, Oliveira DM, Silva BAA, Gomes MA, Reis DR, Lana VLR, Dias TLM UFJF

02.010 *In vitro* **effects of memantine and cannabidiol in Alzheimer's disease**. Monteiro BO, Quintella ML, Romariz SA, Affonso D, Filev R Unifesp

02.011 Participation of neurokinin NK1 receptors in the streptozotocin-induced memory deficit in an animal model of Alzheimer's disease. Mendonça PDS, Leal JC, Duarte FS UFPE

02.012 New GABAergic compound: Acute toxicity and anxiety-like behavior in adult Zebrafish (*Danio rerio*). Mendes CB1, Clementino-Neto J1, D'Oca MGM², Ximenes-da-Silva A1 ¹UFAL, ²UFRGS

02.013 Involvement of Neurokinin Nk3 Receptors from Nucleus Accumbens Shell (NAshell) and Prefrontal Cortex (PEC) in The Positive and Negative-Like Symptoms of Scrhizophrenia in Rats. Silva GVD, Pinho CCES, Duarte FS UFPE

02.014 Chrysin prevents memory impairment induced by aluminum in mice. Campos HM, Costa MD, Neri HS, Moreira LKS, Costa EA, Santos FCA, Ghedini PC UFG

02.015 Brain glucose administration attenuates neuronal death in hippocampus, subiculum and thalamic nuclei after pilocarpine-induced status epilepticus. Melo IS¹, Santos YMO¹, Santos JF¹, Pacheco ALD¹, Costa MDA¹, Oliveira KB¹, Brito IRR¹, Duzzioni M¹, Sabino-Silva R², Borbely AU¹, Castro OW^{1 1}UFAL, ²UFU

02.016 Antidepressant-like potential of solidagenone isolated from *Solidago chilensis*. Alves BO, Miorando D, Zilli GAL, Ernetti J, Alievi K, Zanotelli P, Locateli G, Dalla Vecchia CA, Müller LG, Roman Júnior WA Unochapecó

02.017 Effects of metal complex derived of the Diazepam [(DZP)PdCl]2 in the behaviors related to fear, anxiety and memory in mice. Silva OBS, Souza FMA, Souza GF, Vieira MPS, Correia WBZGB, Neto JGS, Silva AV, Meneghetti MR, Duzzioni M UFAL

02.018 Effects of metal complex derived of the Diazepam [(DZP)PdOAc]2 in the behaviors related to fear, anxiety and memory in mice. Souza GF, S OBS, Vieira MPS, Souza FMA, Correia WBZGB, Neto JGS, Silva AV, Meneghetti MR, Duzzioni M UFAL

03. Psychopharmacology

03.001 Preclinical study of the effects of usnic acid on animals with Alzheimer's disease induced by Aβ1-42. Cazarin CA¹, Dalmagro AP, Gonçalves AE¹, Fátima A², Souza MM^{1 1}Univali, ²UFMG

03.002 Effects of a post-conditioning treatment with ibogaine on the reinstatement of ethanolinduced conditioned place preference in mice. Henriques GM, Santos AA, Reis HS, Dias Júnior BC, Cerqueira NA, Jesus NMS, Marinho EAV, Berro LF UESC

03.003 Impact of Lactobacillus plantarum administration in the acquisition of preference in ethanol-induced conditioned place preference extended protocol in mice. Santos TB¹, Silva KSO¹, Lins JF¹, Kisaki ND¹, Rocha VN¹, Farias CJ¹, Uetanabaro APT¹, Marinho EAV¹, Nicoli JR² ¹UESC, ²UFMG

03.004 Effects OF Nociceptin/Orphanin FQ receptor antagonist on inescapable electric footshock stress-induced anxiety-like behaviors in mice. Barbosa AIS¹, Holanda VAD¹, Soares-Rachetti VDP¹, Ruzza C², Calo G², Gavioli EC^{1 1}UFRN, ²Universidade de Ferrara

03.005 The anti-stress effects of the combination of Escitalopram and Cannabidiol in mice depends on anandamide levels in the prefrontal cortex. Scarante, FF¹, Vicente MA¹, Fuse EJ¹, Lopes VD², Aguiar RP³, Scomparin DS¹, Guimarães FS¹, Campos AC¹¹FMRP-USP, ²FCFRP-USP, ³UEM

03.006 MK801 pharmacogenetics effects in two models of attention-deficit/hyperactivity disorder. Granzotto N, Caneppa S, Voltz L, Izídio GS UFSC

03.007 Role of medial prefrontal cortex subregions in the impairing effects of cannabidiol on contextual fear memory reconsolidation. Bertoglio LJ¹, Stern CAJ², Reichmann HB¹, Gazarini L³, Guimarães FS^{4 1}UFSC, ²UFPR, UFMS³, ⁴FMRP-USP

03.008 Nociceptin/Orphanin FQ receptor signaling modulates resilience to stress in mice. Holanda VAD¹, Salvatore P, Azevedo JG², Finetti L², Calo G², Ruzza C², Gavioli EC^{1 1}UFRN ²Universidade de Ferrara

03.010 Treatment with synthetic cannabinoid WIN55,212-2, during adolescence, alters the susceptibility to cocaine-induced conditioned place preference. Gobira PH, Joca S FCFRP-USP

03.011 Effect of pre-treatment with metadoxine on the development of ethanol-induced conditioned place preference and re-exposure to ethanol in mice. Dias Júnior BC, Santos AA, Coimbra JPSA, Santana MCE, Jesus LOS, Brito ACL, Marinho EAV, Lima AJO UESC

03.012 Ayahuasca and methylphenidate induce conditioned place preference: behavioral and Fos protein expression evaluations. Rodrigues IRS¹, Reis HS¹, Santos TB¹, Serra YA¹, Machado EBO¹, Lima AJO¹, Yokoyama TS², Cruz FC², Berro LF, Marinho EAV^{1 1}UESC, ²Unifesp

03.013 Effects of previous and concomitant administration of *Lactobacillus plantarum* **286** and *Lactobacillus plantarum* **81** on the development of ethanol-induced conditioned place preference in mice. Silva KSO¹, Santos TB¹, Serra YA¹, Lins JF¹, Coimbra JPSA¹, Santos ML¹, Uetanabaro APT¹, Nicoli JR², Marinho EM¹, Marinho EAV¹, Tamura EK^{1 1}UESC, ²UFMG

03.014 Effects of chronic administration of agomelatine on biochemical parameters in female rats. Costa JAM, Moura NPS, Santos LC, Gomes ACCN, Lima FMS, Silva Júnior ED, Gavioli EC, Soares-Rachetti VDP UFRN

04. Inflammation and Immunopharmacology

04.001 Role of hyperglycemia, inflammation and autophagy in bone marrow derived macrophages in Type 1 Diabetes. Sousa ESA, Queiroz LAD, Martins JO USP

04.002 Diosmetin presents topical anti-inflammatory effect on an UVB radiation-induced skin inflammation model in mice. Camponogara C, Brusco I, Brum ES, Pegoraro NS, Oliveira SM UFSM

04.003 Leukotrienes and angiotensin in diabetes. Guimarães JPT¹, Martins JO², Jancar SJ^{1 1}ICB-USP, ²USP

04.004 Reduction of S-nitrosothiol levels improves inflammation in experimental pneumoniainduced sepsis in mice. Oliveira FRMB, Rosales TO, Assreuy J UFSC

04.005 The effect of different prostaglandin F2α concentrations on mesenchymal stem cells. Santos ACA, Sartori T, Borelli P, Fock RA USP

04.006 Augmented Interleukin-8 (IL-8) correlates with classical cardiovascular risk factors in overweight children. Fonseca GAA¹, Alves JD², França ACH², Fagundes DL², Lobato NS¹, Lima VV², Giachini FR^{2 1}UFG, ²UFMT

04.007 Effect of isopropyl galate on ifosfamide induced hemorrhagic cystite in mice. Bandeira SRM, Oliveira LSA, Gonçalves RLG, Rezende DC, Sousa IJO, Neto FPR, Trindade GNC, Oliveira FA UFPI

04.008 A novel platelet-activating factor and protease-activated receptor (PAR)-2 network in lung inflammation in mice. Silva IS, Almeida AD, Lima Filho ACM, Braga WF, Capettini LSA, Leite JIA, Leite MFL, Klein A UFMG

04.009 Synthesis, structural characterization and cytotoxicity evaluation of new 4-Aminoquinoline derivatives. Silva Neto GJ, Silva AE, Silva KCJ, Moreira MSA, Campesatto EA, Meneghetti MR UFAL

04.010 Anti-inflammatory activity of ethil fraction acetate and chemical determination of *Poincianella pyramidalis* (Tul.) L.P.Queiroz. Moraes SZC¹, Graça AS¹, Souza JB¹, Almeida SM¹, Mota DCS¹, Araújo BS¹, Shan AYKV¹, Quintans JSS¹, Quintans-Júnior LJ¹, Barreto E², Brandão GCB³, Estevam CDS^{1 1}UFS, ²UFAL, ³UFOP

04.011 Hepatic microcirculation and metabolic effects of chronic physical exercise in obesity. Rodrigues KL, Silvares RR, Pereira ENGS, Flores EEI, Silva VVD, Daliry A Fiocruz

04.012 Therapeutic administration of gold nanoparticles (AuNPs) accelerates resolution of silicainduced lung fibrosis in mice. Ribeiro NBS¹, Capelozzi VL², Silva VM², Machado MP¹, Sa YAPJ¹, Arantes ACS¹, Martins PMRS¹, Martins MA¹ ¹Fiocruz, ²USP

04.013 Development and challenges of topical mitochondrial target hydrogen sulphide basednanocarrier system for burn skin wound. Cerqueira ARA¹, Matos JKRM¹, Spadari CC¹, Teixeira SA¹, Whiteman M², Muscará MN¹, Lopes L¹, Costa SKP¹ ¹ICB-USP, ²University of Exeter

04.014 Inhibition of neutrophil extracellular traps improves experimental arthritis. Schneider AH¹, Machado CCM¹, Maganin AGM¹, Barroso LC², Fukada Alves SY³, Alves-Filho JCF¹, Cunha TM¹, Louzada-Júnior P¹, Silva TA², Cunha FQ¹ ¹FMRP-USP, ²UFMG, ³FCFRP-USP

04.015 Macrophage activation and antitumor effect of a sulfated polysaccharide fraction obtained from red seaweed *Gracilaria cornea*. Teles FB, Assef ANB, Monteiro VS, Holanda TBL, Alves APN, Benevides NMB, Wilke DV UFC

04.016 Association of early exposure to electrophilic pollutant in initiating non-alcoholic fatty liver disease and cardiovascular risk in APOE-/- mice. Marques CL, Soares AG, Teixeira SA, Feitosa KB, Araújo LCC, Carvalho CRO, Antunes VR, Muscará MN, Costa SKP USP

04.017 Role of DNA-PK complex during during Zika virus infection. Patricio DDO, Mansur DM UFSC

04.018 Comparison of *in vitro* models of airway epithelial cells for the secretion of mucus and inflammatory process. Lagente V, Bodin A, Victoni T, Gicquel T, Pons F University of Rennes

04.019 Friedelin improves migration of thymocytes and inhibits their IL-2 production *in vitro*. Lins MP¹, Carmo JOS¹, Reis MDSR¹, Savino WS², Smaniotto SS¹, Barreto E¹¹UFAL, ²Fiocruz

04.020 A mimetic peptide derived from Annexin-1 (AnxA1), a glucocorticoid-inducible protein, controls inflammation and remodeling induced by house dust mite (HDM) in mice. Ferreira TPT¹, Arantes ACS¹, Flower RJ², Perretti M², Martins MA,¹ Martins PMRS¹ ¹Fiocruz, ²The William Harvey Research Institute

04.021 Probiotics increased lymphocytes subpopulations of CD3+CD4+, CD45+CD25+CCR6-, and CD45+CD25-CCR6+ cells in irinotecan-induced experimental steatohepatitis. Aragão KS¹, Melo A², Wong D², Fernandes C³, Gurgel D², Pereira M², Freitas JA², Almeida PRC², Lima-Júnior RCP^{2 1}Estácio, ²UFC, ³UECE

04.022 Dsatinib, a tyrosine kinase inhibitor, down-regulates airway inflammation and lung remodeling in a mouse model of glucocorticoid resistant asthma. Santana ACC¹, Serra MF¹, Pimentel AS¹, Arantes ACS¹, Abreu SC², Xisto DG², Martins PMRS¹, Rocco PRM², Martins MA¹ ¹Fiocruz, ²UFRJ

04.023 Reduced macrophage P2X7 receptor function during schistosomiasis impairs host defense. Thorstenberg MLP, Monteiro MMLV, Martins M, Silva RC, Silva CLM UFRJ

04.024 Losartan modulates gene expression of renin-angiotensin system components, decreases inflammatory cytokines molecules and attenuates bone volume loss in rats with experimentally-induced periodontitis. Dionisio TJ, Souza GP, Colombini-Ishikiriama BL, Garbieri TF, Parisi VA, Oliveira GM, Santos CF USP

04.025 Evaluation of the leishmanicidal activity of *Allium sativum*, *Curcuma longa*, *Zingiber Officinale* and *Glycine max*. Ferreira SCA, Nunes ICM, Albuquerque LWN, Alves AA, Moreira MSA, Leite AB, Silva AE, Santos MS, Queiroz AC UFAL

04.026 Investigation of the antinociceptive effect and acute toxicity of stigmasterol. Morgan LV, Alves BO, Scatolin M, Zilli GAL, Volfe CRB, Daniel C, Guzatti JGG, Souza MA, Lopes MLLC, Oltramari AR, Zottis C, Müller LG, Scapinello J Unochapecó

04.027 Maternal glucocorticoids *in utero* determines the production of corticosterone and reduces acute lung injury response in adult rats. Severo PH, Gil NL², Balbino AM¹, Azevedo GA¹, Landgraf MA¹, Landgraf RG^{1 1}Unifesp-Diadema, ²Unifesp

04.028 Nerolidol in polymeric nanoparticles: anti-inflammatory effect in arthritis model. Gomes MVLD¹, Souza EPBSS¹, Silva LAS¹, Souza EV¹, Santos WM¹, Araújo JMD¹, Soares RC², Almeida RG¹, Araújo AAS^{1 1}UFS, ²UFU

04.029 Mechanism of chronic anti-inflammatory action of the essential oil of the leaves of *Lantana* montevidensis (Spreng) Briq. evaluated by granulomatous tissue formation-MCAIAEOLLMEGTF.

Pessoa RT¹, Oliveira MRC¹, Oliveira-Tintino CDM², Silva MGL¹, Magalhães FEA³, Martins AOPBB¹, Menezes IRA¹ ¹URCA, ²UFPE, ³UECE

04.047 Experimental model of zymosan induced-arthritis without anesthesia in mice. Soares DM¹, Gomes RO¹, Melo MCC², Santana Júnior JCV¹ ¹UFBA, ²USP

05. Pain and Nociception Pharmacology

05.001 The transient receptor potential ankyrin 1 antagonism reduces the nociception and inflammation in an ultraviolet B radiation-induced burn model in mice. Fialho MFP, Brum ES, Pegoraro NS, Oliveira SM UFSM

05.002 Role of kinin receptors in the reserpine-induced pain/depression dyad. Becker G¹, Brusco I¹, Silva CR², Cunha TM³, Oliveira SM^{1 1}UFSM, ²UFU, ³FMRP-USP

05.003 HUF-101, a cannabidiol analog, prevents mechanical and thermal allodynia in a chemotherapy-induced peripheral neuropathic pain model. Silva N¹, Gomes Fl¹, Lopes A¹, Mechoulam R², Gomes F¹, Cunha TM¹, Guimaraes FS¹¹FMRP-USP, ²Hebrew University

05.004 Involvement of spinal CAV2.3 in the secondary hyperalgesia induced by capsaicin. Ferreira MA¹, Lückmeyer DD¹, Macedo SJ¹, Prudente AS², Ferreira J^{1 1}UFSC, ²Unila

05.005 Effect of lipidic transfer protein isolated from *Morinda citrifolia* (Noni) seeds in sensitive neuropathy peripheral induced by oxaliplatin in mice. Cesario FRAS, Vale ML, Pereira AF, França JC, Oliveira AR, Dias DBS, Silva CMP UFC

05.006 Classical analgesic substances induce thermal antinociceptive effects in *Drosophila* melanogaster larvae. Silva TS¹, Lopes C², Guimarães JDS³, Kuhn GCES³, Romero T³, Naves LA³, Duarte IDG³ ¹FMRP-USP, ²USP, ³UFMG

05.007 Cisplatin–induced neurotoxicity in dorsal root ganglia: The rosiglitazone neuroprotective effects. Oliveira HR, Neves FAR, Duarte DB UnB

05.008 Alfa-phellandrene reduces cancer hypernociception in an experimental model in mice. Reis Filho AC, Pinheiro Neto FP, Nogueira MRSN, Lopes EML, Almeida FRC, França ARSF, Lima MPD, Gomes LS, Acha BT, Ferreira PMP UFPI

05.009 Antinociceptive properties of Tonantzitlolone B isolated from *Stillingia loranthacea* (Euphorbiaceae). Villarreal CF¹, Espírito-Santo RF¹, Santos DS¹, Lauria PSS, Abreu LS², Tavares JF², Velozo ES^{1 1}UFBA, ²UFPB

05.010 Morphine exposure and maternal deprivation during the early postnatal period alter neuromotor development and nerve growth factor levels. Torres ILS¹, Oliveira C¹, Scarabelot VLS¹, Vercelino RV², Silveira NPS¹, Adachi LNA¹, Regner GG¹, Santos LS³, Macedo ICM⁴, Souza AD⁵, Caumo WC¹ ¹UFRGS, ²UFCSPA, ³Unilasalle, ⁴Unipampa, ⁵Unime

05.011 NAD + modulation in neuropathic pain induced by partial ligation of the sciatic nerve in mice. Miranda ALP, Silva VDCS, Santos BLR, Lima CKFL, Oliveira JT, Camacho-Pereira J UFRJ

05.012 Dopamine D1 and D2 receptors mediate the neuropeptide s-induced antinociception in the mouse formalin test. Oliveira MC¹, Holanda VA¹, Souza LS¹, Soares BL¹, André E², Silva Júnior ED¹, Guerrini R³, Calo G³, Ruzza C³, Gavioli EC^{1 1}UFRN, ²UFPR, ³Universidade de Ferrara

05.016 Cannabidiol is a promising treatment for chronic pain: anxiolytic-like and analgesic effects in animal model of chronic constriction injury (CCI), modulation via CB1 and TRPV1 receptors. Cardoso GKRS¹, Zuardi AW², Crippa JA², Hallak J, Leite-Panissi CRA³ ¹USP, ²FMRP-USP, ³FFCLRP-USP

06. Cardiovascular and Renal Pharmacology

06.001 Electrical field stimulation induces endothelium-dependent contraction of human umbilical cord vessels. Britto Júnior J¹, Jacintho FF¹, Murari GF¹, Campos R¹, Moreno RA², Antunes E¹, Mónica FZ¹, De Nucci GD ¹Unicamp, ²UECE

06.002 Causes of cardiac decompensation and its influence on the mortality of hospitalized patients with heart failure in General Hospitals in Maceió, AL. Silva RZ, Rivera IR, Mendonça MA, Galdino EBT, Oliveira-Filho AD, Neves SJF, Costa FA UFAL

06.003 AAL 195, a phosphodiesterase-4 inhibitor, induces hypotensive and vasorelaxant effects in SHR. Silva JCG, Bernardino AC, Paulino ET, Oliveira KRV, Machado MLDP, Rodrigues AKBF, Vieira SP, Araújo Júnior JX, Schmitt M, Ribeiro EAN UFAL

06.004 Matrix Metalloproteinase (MMP)-2 contributes to decrease dystrophin and troponin i in hypertension-induced cardiac remodeling and dysfunction. Mello MMB, Parente JM, Omoto ACM, Fazan Jr. R, Castro MM USP

06.005 Vasodilator potential of ruthenium complexes containing imidazole derivatives in preparations of rat aorta artery. Barbosa FWX, Silveira JAM, Rocha DG, Gouveia FS, Uchôa BO, Silva FAO, Marinho AD, Jorge RJB, Lopes LGF, Siqueira RJB, Monteiro HSA UFC

06.006 Evaluation of the pharmacological potential of the hydroethanolic extract of the peels from *Passiflora edulis fo. flavicarpa degener* in treatment of hypertension in rats. Cabral B¹, Gonçalves TAF², Medeiro IA², Rezende AA¹, Zucolotto SM^{1 1}UFRN, ²UFPB

06.007 Chlorhexidine mouthwash attenuates the antihypertensive effects and vascular MMP-2 dowregulation induced by l-arginine in two kidney, one clip hypertensive rats. Batista RIM¹, Nogueira RC¹, Ferreira GCF¹, Paula GHO¹, Angelis CD¹, Pinheiro LC², Santos JET^{1 1}FMRP-USP, ²EERP-USP

06.008 Analyses of tubular transporters in visceral leishmaniasis patients before and during treatment with liposomal Amphotericin B. Bezerra GF¹, Lima DB¹, Meneses GC¹, Magalhães EP¹, Azevedo IEP¹, Silva Júnior GB², Daher EF¹, Martins AMC^{2 1}UFC, ²Unifor

06.009 Negative inotropic effects and subcellular disorganization induced by *Crotalus durissus cascavella* venom in cardiac tissue. Silva LB¹, Simões LO¹, Alves QL¹, Araújo FA¹, Hora VRS¹, Jesus RLC¹, Soares MBPS², Meira CS², Aguiar MC¹, Couto RD¹, Cruz JS³, Santos MAV², Silva LLC¹, Vasconcelos DFSA^{1 1}UFBA, ²CPqGM-Fiocruz, ³UFMG

06.010 Lethal sepsis increases the anti-contractile action of PVAT by a mechanism that involves NO and PGI2. Awata WMC¹, Gonzaga NA¹, Borges VF¹, Carnio EC², Cunha FQ¹, Tirapelli C² ¹FMRP-USP, ²EERP-USP

06.011 Acute and prolonged diuretic effect of 1,3,5,6-Tetrahydroxyxanthone in normotensive and hypertensive rats. Mariano LNB¹, Boeing T¹, Silva RCMVAF¹, Cechinel-Filho V¹, Niero R¹, Silva LM², Andrade SF¹, Souza P^{1 1}Univali, ²UFPR

06.012 Atorvastatin and sildenafil improve seven-day lead-exposed rats' hypertension. Paula ES, Polonio LCC, Tozzato GPZ, Dias Júnior CAC Unesp-Botucatu

51st Brazilian Congress of Pharmacology and Experimental Therapeutics

06.013 Hydralazine reduces mortality in sepsis animal model. Santos DM¹, Silva EAP¹, Pereira EWM¹, Marinho YYM¹, Heimfarth L¹, Quintans-Júnior LJ¹, Menezes IAC², Santos MRV¹, Quintans JSS¹ ¹UFS, ²UFPR

06.014 Phytochemical screening and evaluation of the vascular effects of the aqueous extract from *Morus Nigra* L. in rats. Silva WFP¹, Silva SB¹, Alves SML², Machado JCB¹, Ferreira MRA¹, Mendes RFV¹, Soares LAL¹, Ximenes RM¹, Araújo AV¹ ¹UFPE, ²UPE

06.015 Translational effects of peptide Kef-1 from probiotic Kefir: Anti-hypertensive and antioxidant properties. Aires R¹, Amorim FG², Côco LZ², Pimenta AB², Leal MA¹, Vasquez EC¹, Campagnaro BP², Meyrelles SDS^{1 1}UFES e ²UVV-ES

06.016 Angiotensin II- induced contraction is due to reactive oxygen species production in renal hypertensive rat aortas. Fahning BM, Bendhack L FCFRP-USP

06.017 Supraphysiological levels of testosterone induces cardiac dysfunction via NLRP3 inflammasome activation. Alves JV¹, Costa RM², Omoto ACM², Silva J², Tostes RCA¹ ¹FMRP-USP, ²UFG

06.019 Ascorbate decreases nitrosylation and increases blood pressure in septic shock. Pinheiro LC¹, Persona IS¹, Tirapelli C¹, Cunha FQ², Santos JET², Lacchini R¹ ¹EERP-USP, ²FMRP-USP

06.020 Alpha-1A adrenoceptor signaling impairment during experimental sepsis. Borges VF¹, Silva Júnior ED², Abrão EP³, Silva KPD⁴, Cunha TM³, Alves-Filho JCF³, Carneiro FS³, Tostes RC³, Baker J⁵, Pupo AS⁴, Cunha FQ³ ¹USP, ²UFRN, ³FMRP-USP, ⁴Unesp-Botucatu, ⁵University of Nottingham

06.021 Consequences of different nutritional insults during lactation in early life of male and female wistar rats. Vieira CB, Fernandes I, Castro-Pinheiro C, Alvim-Silva T, Souza KP, Rocha NN UFF

06.022 The supplementation with *Dipteryx alata vog.*'s almond oil has antithrombotic and vasomodulate effects in rats. Oliveira JCPL, Veras RC, Silva-Luis CC, Azevedo FLAA, Arruda AV, Alves RMFR, Araújo IGA, Medeiros IAUFPB

06.023 Contribution of the aryl hydrocarbon receptor (AhR) to vascular dysfunction in mice fed with a hyperlipidic diet. Bolsoni JA, Silva JF, Tostes R FMRP-USP

06.024 Cardioprotective effects of *Plinia cauliflora* (Mart.) Kausel in a rabbit model of doxorubicininduced congestive heart failure. Tirloni CAS, Romão PVM, Palozi RAC, Guarnier LP, Gasparotto Júnior A UFGD

06.025 Involvement OF NADPH-oxidase enzyme in the nephroprotective and antioxidant effect of (-)- α -bisabolol. Magalhães EP¹, Sampaio TL¹, Silva BP¹, Menezes RRPPB¹, Marinho MM¹, Santos RP², Martins AMC^{1 1}UFC, ²UFC-Sobral

06.026 Evaluation of antiplatelet and vascular effects of *Canna indica* **L in rats**. Brazão SC, Lima GF, Machado LR, Moraes IA, Motta NAV, Brito FCF UFF

06.027 Effect of luteolin on endothelial superoxide anion generation. Cruz YMC¹, Assunção HCR², Bertolino J², Fernandes L¹ Unifesp-Diadema, ²Unifesp

06.028 Isoflurane presents a trend in enhancing nitric oxide-dependent vasodilation response. Souza CRR, Paula ES, Dias Júnior CAC Unesp-Botucatu

06.029 Biochemical characterization in young and adult male and female Wistar rats submitted to neonatal overnourishment. Pedro SS, Amaral GA, Souza KP, Vieira CB UFF

48 51st Brazilian Congress of Pharmacology and Experimental Therapeutics

06.030 Pharmacological investigation of the action mechanism of a natural substance extracted from *Piper rivinoides* in vascular reactivity. Barenco TS¹, Espírito-Santo LC¹, Souza PDN², Marques AM³, Ramalho TC⁴, Nascimento JHM¹, Ponte CG^{2 1}UFRJ, ²IFRJ, ³Fiocruz, ⁴UFLA

06.035 Pharmacological evaluation of a quinazoline derivate in vascular reactivity. Teixeira RGS¹, Barenco TS², Espírito-Santo LC³, Resende GO³, Ponte CG³, Santos WC^{1 1}UFF, ²UFRJ, ³IFRJ

06.037 Anti-inflammatory and vasodilatory effects of inosine in a hypercholesterolemic model: crucial role of eNOS activation and NF-κB inhibition. Lima GF¹, Motta NAV¹, Lopes RO¹, Mendes ABA², Autran LI¹, Brazão SC¹, Brito FCF^{1 1}UFF, ²UFRJ

07. Endocrine, Reproductive and Urinary Pharmacology

07.001 Implantation and standardization of obesity induced by high glycemic index diet in wistar rats. Ferreira SRD, Pessoa RF, Moura TMCF, Bezerra CO, Lima JPM, Cavalcante HC, Aquino JS, Cavalcante FA UFPB

07.002 N-acetylcysteine and alpha-lipoic acid improve oxidative stress, inflammation and serum lipids levels in ovariectomized rats via estrogen-independent mechanisms. Delgobo M, Agnes JP, Gonçalves RM, Santos VW, Zanotto-Filho A UFSC

07.003 Metyrapone Treatment Reduces Maternal Corticosterone, However Does Not Reverse The Placental Changes Resulting from Maternal Food Restriction in Wistar Rats. Gil NL¹, Severo PH¹, Azevedo GA¹, Balbino AM¹, Landgraf MA², Landgraf RG^{1 1}Unifesp-Diadema, ²UNIP

07.004 Programming of lipid metabolism in male rats after intrauterine exposition to Dexamethasone. Souza DN¹, Veronesi VB¹, Santos-Silva JC¹, Teixeira CJ¹, Hecht FB¹, Bordin S², Anhê GF¹ ¹FCM-Unicamp, ²ICB-USP

07.005 *In vitro* effects of fluoxetine on rat distal cauda epididymis contraction. Samala M, Melo AB, Mateus F, Pontes THA, Gomes LTC, Gavioli EC, Silva Júnior ED UFRN

07.006 Food Supplementation with *Spirulina platensis* restores the damage caused by the hypercaloric diet on the relaxing cavernous reactivity of Wistar rats. Diniz AFA, Ferreira PBF, Souza ILL, Lacerda Júnior FF, Cavalcante FA, Silva BA, Silva MCC UFPB

07.007 Identification of potential EPPIN-biding proteins in murine spermatozoa. Raimundo TRF, Mariani NAP, Andrade JJ, Silva AAS, Andrade AD, Kushima HK, Santos LD, Silva EJR Unesp-Botucatu

07.008 Chronic treatment with fluoxetine or sertraline affected epididymal contraction and sperm parameters. Silva Júnior ED, Bezerra MS, Martins ABM, Trajano FMG, Pontes THA, Gomes LTC, Gavioli EC UFRN

07.009 Protective effects of LASSBio-788, a potential antiatherogenic compound, on reproductive function in hypercholesterolemic male rats. Maia IC¹, Gontijo LS¹, Moreira TJ¹, Motta NAV¹, Ribas JAS¹, Kummerle AE², Brito FCF¹, Marostica E^{1 1}UFF, ²UFRRJ

07.011 The Epididymal protease inhibitor (EPPIN) sequence 111QGNNNNFQSKANC123 is critical for its role as a modulator of mouse sperm motility. Silva AAS¹, Mariani N¹, Raimundo T¹, Avellar MCW², Kushima H¹, Silva EJR¹ ¹Unesp-Botucatu, ²Unifesp-EPM

08. Respiratory and Gastrointestinal Pharmacology

08.001 Antidiarrheal and spasmolytic activity of *Lippia origanoides* essential oil. Silva DS¹, Menezes PMN¹, Macedo CAF², Mourão MRN¹, Silva BAO¹, Barros ML¹, Lucchese AM², Ribeiro LAA¹, Silva FS, Palheta Júnior RC ¹UNIVASF, ²UEFS

08.002 Evaluation of immunoregulatory, antioxidant and anti-secretory activity of estragole in the gastric mucosa in animals' models. Alves Júnior EB¹, Serafim CAL¹, Pessoa MLS¹, Vieira GC¹, Jesus TG¹, Silva LMO¹, Silva AO¹, Gomes TGC², Araújo Júnior RF², Batista LM¹, Vasconcelos RC², Araújo AA² ¹UFPB, ²UFRN

08.003 Involvement of Vanyloid Transient Potential Receptor 4 (TRPV4) in ethanol induced gastric lesion in mice. Pacheco G¹, Oliveira AP¹, Nolêto IRSG¹, Chaves LS¹, Iles B¹, Lopes ALF¹, Araújo AKS¹, Santos ES¹, Sousa FBM², Medeiros JVR¹ ¹UFPI, ²UniNassau

08.004 Assessment upon the effects of the ethanolic extract from the leaves of *Annona muricata* on the mus musculus gastrointestinal tract. Matos RPS¹, Sousa JA², Santos F², Souza ORB³, Ferreira LVA² ¹Facid, ²UNIFSA, ³UFPI

08.005 Evaluation of the antioxidant and gastric antiulcerogenic activities of the hydroalcoholic extract and leaf fractions of *Solanum stipulaceum* Roem & Schult. Lima CAA¹, Oliveira DF¹, Silva AS¹, Lima RS², Santos JL¹, Dias AS¹, Santos ALLM¹, Ferro JNS³, Shan AYKV¹, Araújo BS¹, Barreto E³, Silva MS¹, Batista JS¹, Santana AEG³, Estevam CDS¹ ¹UFS, ²UFU, ³UFAL

08.006 Constituents of the gastroesophageal refluxate interfere with the contractility of rat esophagus. Gadelha KKL, Carvalho EFD, Oliveira DMN, Silva KL, Silva AAV, Camilo KLA, Silva CAO, Pinheiro CG, Magalhães PJC UFC

08.007 Evaluation of the gastroprotective and antioxidant effects of Kefir on gastric lesions induced use of anti-inflammatory. Côco LZ¹, Barboza KRM¹, Aires R², Pimenta ABT¹, Vasquez EC¹, Pereira TMC¹, Campagnaro BP¹ ¹UVV-ES, ²UFES

08.008 Effect of pyridostigmine and donepezil treatment on blood pressure and gastric emptying in hypertension rats induced by L-NAME. Telles PVN¹, Cavalcante GL¹, Santos RB¹, Lima JVO², Costa EAS¹, Alves Filho FC¹, Sabino JPJ¹, Silva MTB^{1 1}UFPI, ²UNIFSA

08.009 Evaluation of the gastroprotective activity of hecogenin acetate in rodents. Sousa AJC¹, Pereira EPS¹, Silva Batista WWB¹, Sousa JSLL¹, Soares DSDC¹, Vieira da Silva F¹, Quintans-Júnior LJ¹, Meneses Oliveira RC¹ ¹UFPI, ²UFS

08.010 Investigation of spasmolytic and expectorant activity of vanillin. Silva BAO, Silva FS, Menezes PMN, Silva DS UNIVASF

08.011 Investigation of the relaxant mechanism of action of the essential oil extracted from the leaves of *Hyptis martiusii* Bentt on isolated rat trachea. Ribeiro LAA¹, Barros ML¹, Menezes PMN², Brito W¹, Ribeiro TFF¹, Macedo CAF³, Duarte-Filho LAMS¹, Silva D¹, Silva FS^{1 1}UNIVASF, ²Renorbio, ³UEFS

08.012 Lectins from Canavalia ensiformis e Canavalia brasiliensis prevent increased [Ca2+]c and necrosis of pancreatic acinar cells and improve experimental acute alcoholic pancreatitis. Damasceno SRB¹, Pantoja PS¹, Marques FCJ², Carvalho CMM¹, Leite KESS², Lima MAS², Nascimento KS¹, Cavada BS¹, Assreuy AMS², Souza MHLP¹, Criddle DN¹, Soares PMG^{1 1}UFC, ²UECE

08.013 Study of the respiratory mechanics of spontaneously hypertensive rats. Moriya H¹, Vitorasso R¹, Santana J¹, Lima WT², Oliveira MA^{2 1}USP, ²ICB-USP

08.014 Study of the possible activity of buriti oil (*Mauritia flexuosa* L.) in the intestinal motility of the species *Mus musculus*. Nunes ASS¹, Santos PHN², Queiroz BCSH³, Gomes AF², Sousa GS², Neres HLS¹, Sousa RGC¹, Mendes HL¹, Sousa JA² ¹UFPI, ²UNIFSA, ³UFRN

08.016 Evaluation of effects on gastrointestinal motility of alpha-asarone in mice. Silva AO, Silva LMO, Serafim CAL, Araruna MEC, Pessoa MLS, Alves Júnior EB, Batista LM UFPB

08.017 Effects of bradykinin in non-adrenergic non-cholinergic Gaba-induced relaxation in rat duodenum. Almendra JSL¹, Sousa IA¹, Petri C¹, Cavalcanti SMG¹, Alves Filho FC¹, Cavalcanti PMS² ¹UFPI, ²UFPB

08.018 Evaluation of the mechanisms involved in the anti-secretory effect of H₂S in the diarrhea induced by cholera toxin in mice. Sousa FBM¹, Oliveira AP², Araújo AKS², Nolêto IRSG², Nogueira KM³, Pacheco G², Fonseca MMV, Chaves LS², Lopes ALF², Medeiros JVR² ¹UniNassau, ²UFPI, ³UFC

08.019 Eucalyptol ameliorate lung function on rats exposed to cigarette smoke. Viana EA¹, Lima CC², Melo PO², Serra D², Cavalcante FSA², Lima EKF^{1 1}Ufersa, ²UECE

09. Natural Products and Toxinology

09.001 Chemical composition, acetylcholinesterase inhibition of the essential oil of *Psychotria* poeppigiana and molecular docking simulations. Marangoni JA¹, Volobuff CRF¹, Santos SM¹, Oliveira Júnior PC¹, Borges JAT¹, Yamazaki DAS¹, ²Gauze GF, Formagio ASN¹ ¹UFGD, ²UEM

09.002 Effect of the extract of *Euterpe oleracea* Mart. (Açaí) on physical activity and vascular response in rats submitted to aerobic physical training. Oliveira BC, Soares RA, Bem GF, Santos IB, Carvalho LCRM, Costa CA, Ognibene D, Soares de Moura R, Resende AC UERJ

09.003 Antihypertensive effect of *Alpinia zerumbet* leaf extract in spontaneously hypertensive rats. Menezes MP, Carvalho LCRM, Soares RA, Santos IB, Bem GF, Moura RS, Costa CAD, Resende ADC, Ognibene D UERJ

09.004 Effect of the extract of *Euterpe oleracea* Mart. (Açaí) and aerobic exercise training on physical performance and vascular changes caused by aging. Soares RA, Oliveira BC, Bem GF, Barcellos I, Carvalho LCRM, Costa CAD, Soares de Moura R, Ognibene D, Resende AC UERJ

09.005 Oleanolic acid attenuates olanzapine-induced adipogenesis via the AMPKalpha/SREBP1 pathway in **3T3-L1 cells**. Silva AVL, Silva RAC, Oliveira FTD, Nunes PIG, Freire GP, Lima RP, Pessoa ODL, Rao VS, Santos FA UFC

09.006 Protective effect of Plumeria pudica Latex proteins on ethanol-induced gastric injury in mice. Souza BS, Moita LA, Sales ACS, Barbosa MS, Silva FDS, Sousa FBM, Medeiros JVR, Oliveira JS UFPI

09.007 Non-selective spasmolytic activity of ethanolic extract from leaves of the Varronia dardani (Taroda) J. S. Mill. (Cordiaceae). Figueiredo IAD, Silva GR, Ferreira SRD, Pessoa RF, Veloso CAG, Costa VCO, Cavalcante FA UFPB

09.008 Hemodynamic effects induced by acute administration of ethanolic extract of *Leandra* dasytricha in Spontaneously Hypertensive Rats. Medeiros CFA¹, Camargo SB², Cechinel-Filho V³, Vasconcelos DFSA⁴ ¹USP, ²Fiocruz, ³Univali, ⁴UFBA

09.009 Effect of Stevia sweetener (S. rebaudiana) intake on biochemical and metabolic parameters of control and obese mice. Lima LSB, Gonçalves BGS, Malafaia TOM, Kutianski AKGV, Neves FA, Melo VMS, Parada JPPC, Yahata MA, Santos SDS, Souza ABM, Sanchez Moura A, Garcia de Souza EP UERJ

09.010 Influence of exercise in combination with phytotherapy supplementation in a mouse model of menopause. Martins JP, Silva LCS, Nunes MSN, Campos MMC PUC-RS

09.011 Antifungal and cytotoxic profile of the modified gum of Anadenanthera colubrina var. Cebil (Griseb.) Altschul. Ribeiro FOS¹, Mendes MGA¹, Brito LM², Daboit TC¹, Pessoa CO², Araújo AR¹, Silva DA¹ ¹UFPI, ²UFC

09.012 Evaluation of the acute toxicity and antibacterial activity from the hexane extract of *Stemodia maritima* L. Sousa RS, Silva JAG, Borba EFO, Ramos KRLP, Silva PA, Oliveira PAL, Silva EPM, Lima GT, Princival IMRG, Gusmão NB, Silva TG UFPE

09.013 Relaxant effects of the essential oil of *Ocimum basilicum* in isolated rat aorta. Silva KL, Silva AAV, Pinheiro CG, Silva CAO, Oliveira DMN, Carvalho EF, Gadelha KKL, Camilo KLA, Magalhães PJC UFC

09.014 In vitro evaluation of the fungicidal potential of *Acmella oleracea* (L.) R.K. Jansen (Asteraceae). Cunha LDLL¹, Porto NM², Almeida LFD³, Pestana AM¹, Sousa ITC^{1 1}Unicamp, ²Ceuma, ³UFPB

09.015 Cardiovascular effects caused by the venom of *Lachesis achrochorda* from Colombia. Camilo KLA, Guerrero-Vargas JA, Carvalho EF, Siqueira RJB, Oliveira DMN, Silva AAV, Silva KL, Gadelha KKL, Pinheiro CG, Bindá AH, Magalhães PJC UFC

09.016 Evaluation of acute toxicity and gastroprotective potential of *Croton heliotropiifolius* **Kunth**. Silva JAG, Sousa RS, Borba EFO, Silva PA, Ramos KRLP, Silva SJL, Lima GT, Silva EPM, Silva TG UFPE

09.017 Structural characterization of two beta-neurotoxins (MLL-Tx-I and MLL-Tx-II) from *Micrurus lemniscatus* (South American coralsnake) venom and their modulatory activity on SNARE-protein complex expression. Floriano RS¹, Panunto PC², Torres-Bonilla KA², Saénz-Suarez PA², Rocha T³, Fernandez J⁴, Silva Júnior NJ⁵, Rowan EG⁶, Lomonte B⁴, Hyslop S² ¹Unoeste; ²Unicamp, ³UFS, ⁴Universidad de Costa Rica, ⁵PUC-GO, ⁶University of Strathclyde

09.018 Ability of fucosylated chondroitin sulfate to antagonize bee venom activities. Melo PA, Tavares-Henriques MST, Cruz-Teixeira JMC, Monteiro-Machado M, Gonçalves TS, Patrão-Neto FC, Strauch MA, Mourão PAS UFRJ

09.019 Antibacterial and antibiofilm activities of cordiaquinones obtained from *Cordia polycephala* roots. Araújo AJ¹, Barros AB¹, Oliveira MA¹, Araújo AR¹, Soares MJS¹, Freitas HPS¹, Leite JRSA², Pessoa ODL³, Marinho Filho JDB^{1 1}UFPI, ²UnB, ³UFC

09.020 Antioxidant potential of different accesses of *Maytenus ilicifolia* in Hyperglycemic rats. Zanatta L, Schindler M, Mezzomo H, Marins K, Regginato A, Sachett A, Chitolina R, Bevilaqua F, Zanatta AP, Dal Magro J Unochapecó

09.021 Renal effects induced by *Bothrops alternatus* snake venom involve cytokines and oxidative stress. Monteiro SMN¹, Nogueira Júnior FA¹, Jorge ARC¹, Marinho AD¹, Silveira JAM¹, Silva HRF¹, Silva PLB¹, Chaves Filho AJM¹, Ferreira Júnior RS², Macedo DSM², Jorge RJB², Monteiro HSA^{2 1}UFC, ²Unesp

09.022 Analgesic and anti-inflammatory effects of *Eugenia Dysenterica* leaves. Funez MI, Marques MAS, Santos AA, Albernaz AF, Lisboa IF, Magalhães PO, Duarte DB, Nascimento PGBD UnB

09.023 Comparative study of the renal effects of Mexican coral snake venoms: *Micrurus browni* and *Micrurus laticollaris* (Squamata:Elapidae). Braga JRM¹, Jorge ARC², Marinho AD², Valle MB³, Alagon A³, Moraes ICO⁴, Monteiro HSA², Jorge RJB^{2 1}UFRB, ²UFC, ³UNAM, ⁴Unicatólica

09.024 Evaluation of the potential gastroprotector of *Licania macrophylla* Benth in rodents. Nascimento AA, Sales PF, Nóbrega PA, Corrêa FRFB, Cabral GNV Unifap

09.025 Morphometric and morphology evaluation of hepatoprotection induced by monoterpene against isoproterenol damage in hypertensive and infarcted rats. Machado MLDP¹, Paulino ET¹, Oliveira KRV¹, Bernardino AC¹, Silva JCGD¹, Lopes AAA¹, Vieira SP¹, Silva DM¹, Oliveira AP², Ribeiro EAN^{1 1}UFAL, ²UFPI

09.026 The potential therapeutic effect of a polyphenol-rich extract from seeds of *Euterpe oleracea* Mart. (acai) in renovascular hypertension. Machado ML, Cunha LLM, Vilhena JC, Jorge TM, Carvalho LCRM, Soares RA, Santos IB, Bem GF, Ognibene D, Resende AC, Soares de Moura R, Costa CAD UERJ

09.027 Antihypertensive effects in the long-term induced by alpha-terpineol after chronic treatment in rats. Oliveira KRV¹, Paulino ET¹, Silva JCG¹, Bernardino AC¹, Machado MLDP¹, Rodrigues AKBF¹, Silva DM¹, Oliveira AP², Ribeiro EAN^{1 1}UFAL, ²UFPI

09.028 Effects of Copaiba oil and Dapsone on Envenomation by *Loxosceles intermedia* Spider in Mice. Oliveira KC¹, Teixeira RGS¹, Ribeiro MF¹, Garcia TA¹, Oliveira FL², Machado TB¹, Souza CMV³, Calil-Elias S^{1 1}UFF, ²UFRJ, ³Fiocruz

09.029 Protective effect of Epiisopilosine, a new alkaloid from *Pilocarpus Microphyllus*, on paracetamol induced hepatic lesion in mice. Sousa GC¹, Chaves LS¹, Santos ES¹, Silva PC¹, Pacheco G¹, Sousa FBM², Carvalho JL¹, Lopes ALF¹, Pinho SS¹, Medeiros JVR¹ ¹UFPI, ²UniNassau

09.030 Inhibition of GAPDH enzyme from *Trypanosoma cruzi* (tcGAPDH) BY (-)-α-BISABOLOL: *in silico* and *in vitro* ASSAY. Silva BP¹, Menezes RRPPB¹, Magalhães EP¹, Sampaio TL¹, Marinho MM¹, Santos RP², Martins AMC^{1 1}UFC, ²UFC-Sobral

09.031 Involvement of nitric oxide and potassium channels on the vasorelaxant effect induced by *Leandra dasytricha* **extract**. Lima GBC¹, Alves QL¹, Araújo FA², Jesus RLC¹, Brito DS¹, Gonçalves GO¹, Moraes RA³, Cechinel-Filho V⁴, Vasconcelos DFSA¹ ¹UFBA, ²CPqGM-Fiocruz, ³Fiocruz, ⁴Univali

09.032 Seasonal Influence on the chemical constitution and biological effect of the essential oil from *A. Triphylla*. Parodi TV¹, Gressler LT¹, Silva LL¹, Becker AG², Schmidt D¹, Caron BO, Heinzmann BM¹, Baldisserotto B¹ 1UFSM, ²UFPR

09.033 Evolfilene, a sesquiterpene from *Evolvulus linarioides*, attenuates ovalbumin-induced allergic airway inflammation in mice. Gomes GC¹, Miranda EP, Assis SKC¹, Souza TNC², Costa VCO³, Pereira LCO³, Silva MS³, Ferro JNS², Barreto E², Correia ACC^{1 1}UPE, ²UFAL, ¹UFPB

09.034 Effect of *Hesperozygis ringens* (Benth.) Epling hexanic extract on inhibition of hemolysis. Ferrari FT, Rosa IA, Bandeira Júnior G, Cargnelutti JF, Heinzmann BM UFSM

09.035 Healing bioproduct enriched with *Abarema cochliacarpa*. Almeida SM¹, Dias ASD¹, Mota DCS¹, Souza JB¹, Graça AS¹, Moraes SZC, Shan AYKV¹, Barreto E², Santana AEGS², Albuquerque Júnior RLC³, Araújo BSA¹, Estevam CDS^{1 1}UFS, ²UFAL, ³Unit

09.036 Chemical characterization and antimicrobial activity of *S. cumini* AGAINST *Klebsiella pneumoniae*. Santos AM¹, Estevam CDS¹, Santos SBD¹, Santos PAL¹, Santos LC¹, Silva AS¹, Mota KO², Texeira KCS¹, Araujo BS¹ ¹UFS, ²UFAL

09.037 Effect of aqueous extract and protein fraction without phycocyanin from *Spirulina platensis* in human neutrophils and preadipocytes. Sousa JAC, Almeida AC, Azul FVCS, Pinto CS, Melo KM, Rocha TM, Viana GSB, Campos DCO, Santos FA, Oliveira HD, Pimenta ATA, Araújo EVO, Leal LKAM UFC

09.038 Evaluation of the antioxidant activity of the methanolic extract of *Miconia affinis* **DC**. and determination of the sensitivity profile by disk-diffusion. Sousa MGO¹, Borba EFO¹, Costa TCP², Silva JAG¹, Sousa RS¹, Silva EPM¹, Silva PA¹, Leite TCC¹, Gusmão NB¹, Silva TGD^{1 1}UFPE, ²UFRPE

09.039 Effect of *Dioscorea villosa* on neutrophil migration in OVX mice with zymosan-induced arthritis. Santos WM, Almeida RG, Camargo EA, Souza EPBSS, Silva LAS UFS

09.040 Effects of supplementation with *S. Platensis* on oxidative stress and via MAPK in uterus of Wistar rats. Lacerda Júnior FF¹, Ferreira PBF¹, Diniz AFA¹, Silva MCCS¹, Araújo LCC², Silva AS¹, Costa BA^{1 1}UFPB, ²USP

09.041 Proteins from *Plumeria pudica* Latex prevent inflammation and alveolar bone loss on periodontitis induced by ligature in rats. Oliveira NVM, Oliveira LES, Souza BS, Moita LA, Sales ACS, Barbosa MS, Silva FDS, França LFC, Vasconcelos DFP, Oliveira JS UFPI

09.042 Evaluation of gastroprotective activity of *Tocoyena hispidula* **Standl L. in rodents**. Batista CL, Sousa JSLL, Sousa AJC, Silva Batista WWB, Fernandes HB, Pereira da Silva E, Araújo JAN, Alves EAS, Meneses Oliveira RC UFPI

09.044 Effects of Euterpe oleracea Mart. (Acai) Extract on hepatic steatosis associated to obesity: Role of the Renin-Angiotensin System. Romão MH, Bem GF, Santos IBS, Soares RA, Ognibene D, Costa CA, Resende AC UERJ

09.045 Antagonist of *Apis mellifera* activities by *Eclipta prostrata* extract and its constituents. Souza PDN¹, Rocha Júnior JRS¹, Pinheiro AN¹, Cesar MOC¹, Monteiro-Machado M¹, Strauch MA¹, Ponte CG², Patrão-Neto FC¹, Melo PA^{1 1}UFRJ, ²IFRJ

09.065 Effects of *Piper hispidum* **in** *Danio rerio* **Behavioral Tests**. Bastos-Pereira AL, Cabral PFA, Cipriani DS UESC

09.068 Effects of Euterpe oleracea Mart. (acai) extract in 3T3-L1 pre-adipocyte cells in Culture: role of renin angiotensin system. Silva DLB, Barcellos I, Bem GF, Romão MH, Oliveira BC, Soares RA, Menezes MP, Trindade PL, Daleprane JB, Costa CA, Ognibene D, Soares de Moura R, Resende AC UERJ

09.069 Antileishmania activity in vitro of cordiaquinone E obtained from Cordia polycephala roots. Rodrigues RRL, Nunes TAL, Sousa JMS, Rodrigues KAF, Marinho Filho JDB, Freitas HPS, Pessoa ODL, Araújo AJ UFPI, UFC

10. Cancer Pharmacology

10.001 Evaluation of the toxicities presented by patients with lung cancer treated with carboplatin and paclitaxel. Seguin CS¹, Vasconcelos P¹, Cursino M¹, Bastos L¹, Vaz C¹, Quintanilha J¹, Barbeiro A¹, Zambom L¹, Perroud Jr M¹, Moriel P¹, Pincinato E^{2 1}Unicamp, ²Mackenzie

10.002 Evidence of interaction in the association of *Matricaria recutita* and 5-Fluorouracil on toxicological and histomorphological analysis in mice with cancer. Santos SA¹, Amaral RG¹, Menezes

Filho RO¹, Graca AS¹, Mendes Neto JM¹, Andrade LN¹, Albuquerque Júnior RLC², Pereira Filho RN², Gomes SVF², Santos SL¹, Carvalho AA^{1 1}UFS, ²Unit

10.003 Benefits of the FFA1 and FFA4 receptors modulation in a pre-clinical model of cancer associated cachexia. Freitas RDS, Muradás TC, Dagnino AP, Greggio S, Venturin G, Costa J, Campos MM PUC-RS

10.004 The antitumor potential of polysaccharide extracted of Anacardium occidentale L. stem. Barros AB¹, Araújo AJ¹, Oliveira TM¹, Iles B¹, Medeiros JVR¹, Silva DA¹, Moura AF¹, Moraes Filho MO², Marinho Filho JDB^{1 1}UFPI, ²UFC

10.005 In vivo and in vitro antineoplastic effect against mammary cancer of polysaccharides extracted from sweet green pepper (*Capsicum annuum* (**CAP**). Adami ER, Acco A, Corso CR, Turin-Oliveira NM, Galindo C, Stipp MC, Dittrich RL, Telles JEQ, Klassen G, Cavaliere E, Cordeiro LMC, Silva LM, Milani L UFPR

10.006 Gedunin Effect on Glioblastoma Progression. Costa TEMM¹, Seito LN¹, Krahe TE², Henriques MG¹, Penido C¹ ¹Fiocruz, ²UERJ

10.007 NQO1 enzyme and cancer: Scientific and technological mapping. Costa PMS, Paier CRK, Oliveira FCE, Rebouças LV, Silva MFS, Pessoa C UFC

10.008 Synthesis and antiproliferative activity of novel derivates of alpha-lapachone on tumor cell lines. Lima DJB¹, Pessoa C¹, Silva Júnior EN², Valença W², Rebouças LV¹, Costa PMS^{1 1}UFC, ²UFMG

10.009 Prospection of new synthetic molecules and determination of anticancer effect of a new synthetic chalcone-sulfonamide (CSS185). Moura AF¹, Araújo AJ¹, Marinho Filho JDB¹, Santos MCL², Silva MFS², Oliveira FCE², Castro MRC³, Peres CN³, Pessoa C², Moraes Filho MO^{2 1}UFPI, ²UFC, ³UFG

10.010 Evaluation of the chemopreventive effect of *Cordia lutea* L flower ethanolic extract on prostate carcinogenesis induced by N-methyl-N-nitrosourea and testosterone in rats. Armas JPR, Ortiz-Sanchez JM, Aguilar-Carranza C, Palomino-Pacheco M Universidad Nacional Mayor de San Marcos

10.011 Extract of the leaves of *Passiflora alata* **induces apoptosis and necrosis in leukemic cell line**. Nascimento DS¹, Amaral RG¹, Santos SA¹, Mendes Neto JM¹, Andrade LN¹, Gomes SVF², Severino P², Menezes Filho RO¹, Santos SL¹, Carvalho AA^{1 1}UFS, ²Unit

10.012 Investigation of the cytotoxic activity of quinones B-lapachone and lapachone in cell lines *in vitro*. Sousa AC¹, Queiroz RRM¹, Silva MFS¹, Oliveira FCE¹, Abreu BB¹, Rebouças LV¹, Silva Júnior EN², Pessoa C¹ ¹UFC, ²UFMG

10.013 Antitumor activity of *Eplingiella fruticosa* Salmz Benth. in swiss mice transplanted with sarcoma 180. Mota DCS¹, Lima ACBL¹, Almeida SM¹, Souza JB¹, Moraes SZC¹, Graça AS¹, Amaral RG¹, Shan AYKV¹, Barreto E², Albuquerque Júnior RLC³, Araújo BS¹, Estevam CDS^{1 1}UFS, ²UFAL, ³Unit

10.014 Phytochemical analysis and biological activity of the leaves extracts of *Montrichardia linifera* (Arruda) Schott (Araceae). Araújo JI, Pereira FIA, Barros AB, Araújo AR, Araújo GS, Silva DA, Marinho Filho JDB, Araújo AJ UFPI

10.019 Gene expression profile as predictive response markers to neoadjuvant anastrazole in elderly women diagnosed with breast cancer. Lopes MHS¹, Barbosa LA², Torrezan GT³, Olivieri EHR³, Paula CAA³, Gifoni MAC², Lima MVA², Carraro DM³, Wong DVT¹, Andrade VP^{3 1}UFC, ²ICC, ³AC Camargo Cancer Center

11. Clinical Pharmacology, Pharmacokinetics, Pharmacogenomics and Toxicology

11.001 In vitro in vivo correlation in the development of oral drug formulations: Case studies from a Pharmaceutical Industry in Brazil. Davanço MG¹, Meulman J², Carvalho PO¹, Duarte FG², Campos DR² USF, Sanofi Medley Farmacêutica

11.002 Microdialys probes calibration for an application in pharmacokinetic study of amphotericin **B**. Santos VV, Araújo JMS, Pereira LC, Azeredo FJ UFBA

11.003 ALDH2 Activity recovery by nicotinamide adenine dinucleotide (NAD+) treatment in neuroblastoma SH-SY5Y cells exposed to lead and ethanol. Deza-Ponzio R, Cejas RB, Albrecht PA, Fernández-Hubeid LE, Cancela LM, Irazoqui FJ, Virgolini MB Universidad de Córdoba

11.004 Analysis of Gene Polymorphisms Related to NSAIDs Metabolism and Pain Modulation. Calvo AM¹, Weckwerth GM¹, Oliveira GM¹, Dionisio TJ¹, Faria FAC, Moore T², Santos CF¹ USP, ²Kailos Genetics

11.005 New insights from the study of vulnerable populations exposed to mercury: genetic susceptibility, peripheral markers of neurotoxicity and the impact of large-scale projects in Amazon. Crespo-Lopez ME¹, Arrifano G¹, Macchi BM¹, Oliveira MA¹, Araújo AL¹, Sacramento L¹, Takeda P¹, Martin-Doimeadios RCR², Moreno MJ², Trujillo SF², Oria R³, Leite JA^{4 1}UFPA, ²Universidad Complutense of Madrid, ³UFC, ⁴UFMG

11.006 Toxicity of the herbicide metribuzin on the development and antioxidant enzymes in drosophila melanogaster. Silva CM, Oliveira J, Silva E, Neiva G, Araújo LA UFAL

11.007 Toxicological evaluation of the insecticide imidacloprid and the herbicide hexazinone in *Drosophila melanogaster*. Floresta LRS, Silva KTR, Oliveira JM, Silva EA, Neiva G, Araújo LAD UFAL

11.008 Biocompatibility of the Eu doped TiO2 nanocrystals and CdSe/CdS magic sized quantum dots in *Drosophila melanogaster*. Silva KTR, Oliveira JM, Silva EA, Carvalho JPS, Silva U, Silva CJ, Dantas NO, Silva ACA, Araújo LA UFAL

11.009 Adverse Drug Reactions of Magnesium Sulfatein High-Risk Pregnancy and puerperium in Intensive Care. Borges MAH¹, Costa T², Cunha MD², Bezerra PKV², Azeredo F¹, Martins R², Oliveira A^{2 1}UFBA, ²UFRN

11.010 Exposition To Water Containing Traces Of Heavy Metals And Pesticides From Alagoas' Water Basins Induces Behavioral Alterations In Adult Zebrafish (Danio rerio). Santos ORS, Santana DB, Sousa MAS, Oliveira AAR, Nascimento TG, Reys JRM, Moura MABF UFAL

12. Drug Discovery and Development

12.001 Pharmacokinetics of linalool complexed with B-cyclodextrin: Is it a new therapeutic formulation for treatment of hypertension? Camargo SB¹, Medeiros CFA¹, Santos VV², Azeredo FJ³, Vasconcelos DFSA¹ ¹Fiocruz, ²USP, ³UFBA

12.002 Preclinical pharmacological evaluation of *Senna velutina* roots: Chemical composition, *in vitro* and *in vivo* antitumor effects, and death mechanisms in B16F10-Nex2 melanoma cell. Castro DTH¹, Campos JF¹, Damião MJ¹, Torquato HF², Paredes-Gamero EJ³, Carollo CA³, Rodrigues EG², Souza KDP¹, Santos EL^{1 1}UFGD, ²Unifesp, ³UFMS

12.003 Experimental Hydroxymethylnitrofurazone-therapy in CL-Brener bioluminescent *Trypanosoma cruzi* infections is more efficient, reduces cardiac and hepatic damage in the chronic than acute stage. Scarim CB¹, Francisco A¹, Jayawardhana S¹, Lewis MD, Chin CM², Taylor MC¹, Kelly JM¹ Unesp-Araraquara, FCFAr-Unesp

12.004 Evaluation of interaction between Nanocarrier PAMAM of 3rd generation and substance with potential anti-cancerigene. Silva MPG, Santos JCN, Araújo Júnior JX, Aquino TM, Abreu FCD UFAL

12.005 Determination of the cytotoxic effect and evaluation of the *in vitro* leishmanicidal potential of new aminoguanidine hydrazone derivatives and other related compounds. Santos MS, Queiroz AC, Silva Júnior EF, Leite AB, Vieira ACS, Silva JKS, Aquino TM, Araújo Júnior JX, Moreira MSA UFAL

12.006 From Kefir proteome to *in vivo* analysis: Exploring the hypotensive effects of a prototype candidate for ACE inhibitor drug. Amorim FG¹, Coitinho LB², Aires R³, Dias AT³, Meyrelles SS³, Rezende LCD³, Pauw ED⁴, Quinton L⁴, Campagnaro BP¹, Vasquez EC¹ ¹UVV-ES, ²FCFRP-USP, ³UFES, ⁴University of Liège

12.007 Use of the ethanolic extract of *Mimosa tenuiflora* for the synthesis of silver nanoparticles with antimicrobial applications. Souza JMT, Rocha LMC, Barros AB, Araújo AR, Silva DA, Marinho Filho JDB, Araújo AJ UFPI

12.008 Pharmacological screening of synthetics neolignans front of clinical bacteria strains. Dourado TMH, Cruz LS, Oliveira BHM, Oliveira BTM, Silva LAA, Rodrigues LC, Vasconcelos UVRG, Travassos RA UFPB

12.009 Anti-Inflammatory activity in arthritis model of nerolidol in inclusion complex with betacyclodextrin. Ribeiro LD¹, Souza EPBSS¹, Gomes MVLD¹, Silva LAS¹, Quintans LJ¹, Rocha LM², Cavalcanti MD¹, Araújo AAS^{1 1}UFS, ²UFF

14. Pharmacology: Other

14.001 Zebrafish feeding of Gong-Cheng-You-Cha (a herb-based health food) delivers antifatigue effects. Zhao Y, Hao E, Qin L, Xie J, Huang J, Du Z, Hou X, Deng J Guangxi University of Chinese Medicine

14.002 Periprostatic adipose tissue from obese mice reduced the contraction induced by alpha-1 adrenoceptor agonist in isolated prostate smooth muscle from obese and lean mice. Passos GR, Oliveira MG, Bertollotto GM, Rocha NR, Antunes E, Mónica FZM Unicamp

14.003 In vitro evaluation of the antileishmania and immunomodulatory activities of the monoterpenes limonene and carvacrol. Carvalho RCV¹, Santos IL¹, Alves MMM¹, Sousa VC¹, Cruz LPL¹, Santos LP¹, Carneiro SMP¹, Carvalho FAA² ¹UFPI, ²UFMG

14.004 Validation of an *in vitro* cell culture bioassay for the bioactivity assessment of monoclonal antibody denosumab. Perobelli RF, Xavier B, Silva FS, Cardoso Júnior CDA, Cavalheiro TN, Walter ME, Dalmora SL UFSM

14.005 Development of an *in vitro* cell culture bioassay for the potency assessment of ramucirumab. Silva FS, Perobelli RF, Xavier B, Cardoso Júnior CDA, Nascimento BF, Mohr A, Diefenbach ICF, Dalmora SL UFSM

14.006 Evaluation of probable interactions between food/nutrient and drugs used in treatment of non-communicable chronic diseases in seniors living in an asylum in Macaé (RJ). Campos WVA, Carmo PLC, Vianna KS, Ferreira CCD UFRJ

14.007 Use of delta-9-Tetrahydrocannabinol (DELTA-9-THC) and cannabidiol in the treatment of neurological disorders a systematic review. Lopes VB¹, Silva VIAP², Araújo HFP², Mendonça TPS¹, André ACGM¹, Santos FMR¹ ¹Unit, ²UFPE

14.008 Evaluation of the cytotoxic activity of nanostructured sodium alendronate. Machado FS, Iles B, Dourado FF, Araújo GS, Souza JMT, Barros AB, Medeiros JVR, Silva DA, Araújo AJ, Marinho Filho JDB UFPI

14.009 PHytochemical prospection and antibacterial evaluation of the ethanolic extract of *Croton tricolor* Klotzsch ex Baill. Neri TS¹, Silva DC¹, Costa JG², Santos AF³, Maior LPS¹, Rocha TJM⁴, Fonseca SA¹ Cesmac, ²UECE, ³UFAL, ⁴UPE

14.010 Establishment of a diet-induced animal model of non-alcoholic fatty liver disease for application in pre-clinical studies. Araújo BP, Pereira ENGS, Martins CSM, Silvares RR, Flores EEI, Rodrigues KL, Daliry A Fiocruz

14.012 Relaxing effect of purified cashew gum (*Anacardium occcidentale L.*) on rodent uterus *in vitro* and *in vivo*. Souza ORB, Savia SFLD, Pereira LCA, Santos DF, Oliveira MM, Reis Filho ACF, Silva AM, Silva DA, Nunes LCC, Santos RFS, Meneses Oliveira RC UFPI

14.019 Investigation of the presence of drugs as emerging pollutants in Bengal River (Nova Friburgo, RJ) and implications for health. Fujimaki CMO, Bernardo RRB, Santos BLR, Lima CKF, Miranda ALP UFRJ

Poster session 2:

27/09/2019 (Friday)

01. Cellular and Molecular Pharmacology

01.010 Alpha 7 Nicotinic acetylcholine receptors in macrophages and microglia. Santos VGB, Castro NG, Nazareth AMN, Lima FRSL, Leser FSL UFRJ

01.011 Participation of PI3 kinase and ERK pathways in the differentiation of hematopoietic stem cells by P2 receptors. Souza KF¹, Araújo RT¹, Zaias AB, Torquato HF¹, Paredes-Gamero EJ² ¹Unifesp, ²UFMS

01.012 Cytoglobin attenuates neuroinflammation in lipopolysaccharide-activated primary preoptic area cells via NFkB pathway inhibition. Gomes BRB, Sousa GLS, Ott D, Murgott J, Sousa MV, Souza PEN, Roth J, Souza FHV UnB

01.013 AT1 receptor signaling in cells with high levels of O-GlcNAc-modified intracellular proteins. Silva Neto JA, Abrão EP, Silva J, Costa TJ, Duarte DA, Simões SC, Costa Neto CM, Tostes RC FMRP-USP **01.014** Characterization of extracellular cAMP metabolism in rat airways. Pacini ESA¹, Jackson EK², Godinho RO¹ Unifesp¹; ²University of Pittsburgh

01.015 Unveiling the molecular bases of AT1 receptor desensitization and tachyphylaxis. Duarte DA¹, Silva LTPEA¹, Oliveira EB¹, Bouvier M², Costa Neto CM¹USP, ²Université de Montréal

01.016 Inhibitory activity of Copaifera reticulata and Piper marginatum oleoresin on lipoxygenase enzyme. Pires TM¹, Silva LAN¹, Oliveira ECP¹, Acho LDR², Lima ES², Moraes WP² UFOPA, ²UFAM

01.017 Protective effect of Aqueous Coriandrum sativum L. extract in the production of reactive species and Aortic wall remodeling in rat neonate offspring after maternal exposure to methylmercury. ¹Bannwart CM, ¹Ferreira PN, ¹Rodrigues KE, ¹Oliveira FR, ¹Hamoy M, ¹Amarante CB, ¹Nascimento JLM, ¹Macchi BDM, ¹Gerlach RF², ¹Silva CAM, ¹Prado AF ¹UFPA, ²USP

01.018 Action of lysine (K) -deacetylase modulators on cell metabolism in astrocytes exposed to oxidative stress and excitotoxicity: possible neuroprotective role in Amyotrophic Lateral Sclerosis. Torresi JLB, Rosenstock TR, Dutra MB FCMSCSP

02. Neuropharmacology

02.019 Participation of Auraptene and Isoquercetin in the sedative effects promoted by hydroethanolic extract (HE) of polygala altomontana in rats. Leal JC¹, Silva JMD¹, Tizziani T¹, Brighente IMC¹, Duarte FS^{1 1}UFPE, ²UFSC

02.020 The role of interferon-γ in L-DOPA-induced dyskinesia in Parkinson's disease. Ferrari DP¹, Bortolanza M², Bel ED² FMRP-USP, FORP-USP

02.022 Involvement of the hypocampal colinergic system in the depressive-like behavior induced by the withdrawal of crack/cocaine in mice. Santos Neto JG¹, Souza FMAD¹, Silva NKGT², Pacheco ALD¹, Nicácio DCSP¹, Cavalcante GTS¹, Correia WBZGB¹, Vieira MPS¹, Souza GF¹, Silva OBS¹, Silva VC¹, Brito IRR¹, Castro OW¹, Duzzioni M¹ UFAL¹, USP²

02.023 Evaluation of the effects of moderate aerobic exercise on PTEN/AKT pathway in mice cerebellum. Matumoto AM, Kawamoto EM, Andreotti DZ ICB-USP

02.024 Biological evaluation of a library of bivalent derivatives as potential theranostic tools for Alzheimer's disease. Gonçalves AE¹, Gandini A², Poeta E², Sabaté R², Bartolini M², Monti B², Strocchi S², Paglia S², Grifoni D², Bolognesi ML² ¹Univali, ²Università di Bologna

02.025 SUMOylation: A new neuroprotective target for Parkinson's disease? Soares ES, Junqueira SC, Zanella CA, Mansur DS, Prediger RDS, Cimarosti HI UFSC

02.026 Nicotinic α7 receptor controls acetylcholine spillover from the rat motor endplate during high frequency nerve firing. Santana LMC, Silva CRA, Prado WA, Matos JBAGN, Sá PC UEM

02.027 Structure-activity relationships, molecular docking and biological evaluation of sulfonamides on the memory of animals with Alzheimer's disease. Souza MM¹, Andreolla MCA¹, Souza AS², Ferreira LLG³, Andricopulo AD², Brighente IMC², Yunes RA⁴, Nunes R⁴, Oliveira AS⁴ ¹Univali, ²Unifesp, ³UFSCar, ⁴UFSC

02.028 Zika virus neuroinfection impairs Dentate-CA3 hippocampal synaptic plasticity in adult mice. Neves GA, Castro NG, Figueiredo CP, Aragão FB, Neris RLS, Souza INO, Miranda IA, Clarke J, Poian AT, Ferreira ST UFRJ **02.029** Study of the participation of nitrergic neurotransmission in the lateral prefrontal cortex in cardiovascular responses by acute restraint stress in rats. Alves FHF¹, Goulart MTG¹, Crestani CC², Busnardo CB², Corrêa FMA^{3 1}UFLA, ²Unesp-Araraquara, ³USP

02.030 Evaluation of anti-neuroinflammatory effect of a standardized extract of *Amburana cearensis* in a microglial cell line. Azul FVCS, Machado de Jesus N, Araújo AB, Ferreira MKA, Norberto JN, Sousa JAC, Almeida TS, Leal LKAM UFC

02.031 The ventral medial prefrontal cortex CRF1 receptor modulates the tachycardic activity of the baroreflex. Brufatto JPT¹, Uliana DL², Resstel L³, ³Lagatta DC, Silva EMF³, Assis ABB³ ¹USP, ²University of Pittsburgh, ³FMRP-USP

02.032 Crack cocaine affects larval development, motility and female fertility in *Drosophila melanogaster*. Brito IRR, Santos JF, Angelo LKGA, Araújo LA, Castro OW, Silva Filho EA, Rodarte RSR UFAL

02.033 Increased glucose availability reduces neuronal activity in hippocampus, subiculum and thalamic nuclei after status epilepticus. Santos JF¹, Melo IS¹, Santos YMO¹, Pacheco ALD¹, Costa MDA¹, Oliveira KB¹, Brito IRR¹, Duzzioni M¹, Sabino-Silva R², Borbely AU¹, Castro OW^{1 1}UFAL, ²UFU

02.034 Pharmacological validation of a new animal model of anxiety in mice: A Single subconvulsant dose of pilocarpine. Vieira MPS¹, Souza FMA¹, Santos Neto JG¹, Silva OBS, Souza GF¹, Correia WBZGB¹, Duarte FS², Lima TCM³, Duzzioni M^{1 1}UFAL, ²UFPE, ³UFSC

02.035 Solutol[®] HS 15 has anticonvulsant and neuroprotective actions in an experimental model of temporal lobe epilepsy. Paulino PAT, Arroxelas-Silva CL, Conceição-Silva GF, Santos ED, Pereira-Silva W, Castro OW, Gitaí DLG UFAL

02.036 Maternal crack cocaine use in rats alters depression, anxiety-like behavior, memory impairment and seizure susceptibility in offspring. Pacheco ALD, Melo IS, Santos JF, Costa MA, Souza FMA, Santos YMO, Silva BRM, Oliveira KLS, Santos Neto JG, Borbely AU, Duzzioni M, Castro OW UFAL

03. Psychopharmacology

03.015 The *in vitro* effect of the antipsychotic quetiapine on inflammation is dependent on the initial state of macrophages. Turra BO¹, Nerys DAO¹, Braun LE¹, Azzolin VF¹, Teixeira CF¹, Lima PASP², Chitolina B¹, Ribeiro EE¹, Motta JR¹, Praia RS¹, Cruz IBM¹, Barbisan F^{1 1}UFSM, ²PUC-RS

03.016 Effect of the environment on the re-exposure to ethanol in mice treated with ibogaine in the ethanol-induced conditioned place preference (CPP) paradigm. Santos AA, Henriques GM, Kisaki ND, Leite JPC, Machado EBO, Macêdo LEL, Marinho EAV, Lima AJO UESC

03.017 Early and late behavioral and biochemical consequences of ethanol withdrawal: focus on indoleamine 2,3 dioxygenase activity. Santos LC¹, Ayres D¹, Pinto I, Silveira M¹, Dantas R¹, Albino M¹, Lima R¹, André E², Tirapelli C³, Padovan C³, Gavioli EC¹, Rachetti V¹ ¹UFRN, ²UFPR, ³USP

03.018 Chronic treatment with venlafaxine in stressed mice up-regulates CB1 expression in the hippocampus but produces its behavioral effects in a CB1-independent manner. Araújo MR, Scarante FF, Scomparin DS, Guimarães FS, Campos AC FMRP-USP

03.019 Involvement of TRPA1 in a model of depression induced by corticosterone in mice. Santos BM, Pereira GCP, Bochi GV UFSM

03.020 Pharmacological treatments for cocaine addiction needs a selective approach. Anesio A, Yokoyama TS, Zaniboni CR, Palombo P, Bertagna N, Cruz FC Unifesp

03.021 Cannabidiol attenuates orofacial dyskinesia and cognitive impairment induced by haloperidol in mice via PPARy receptors. Sonego AB, Prado DS, Guimarães FS FMRP-USP

03.022 Cannabidiol and 7-nitroindazol reverse the behavioral changes induced by an animal model of PTSD. Lisboa SFDS¹, Vila-Verde C², Uliana DL³, Resstel L², Guimarães FS^{2 1}FCFRP-USP, ²FMRP-USP, ³University of Pittsburgh

03.023 Antidepressant-like effect of beta-caryophyllene in mice. Almeida FRC, Oliveira GLSO, Lopes EM, Reis Filho AC UFPI

03.024 Investigation of the rewarding effects of ibogaine and alcohol on a mouse conditioned place preference model. Kisaki ND, Henriques GM, Rodrigues IRS, Santana MCE, Coimbra JPSA, Moreira Júnior ECM, Marinho EAV, Berro LF UESC

03.025 Curve doses of ethanol administered orally in the conditioned place preference induction in male and female mice. Lins JF¹, Santos TB¹, Silva KSO¹, Santos ML¹, Leite JPC¹, Santana MCE¹, Rocha VN¹, Tamura EK¹, Lima AJO¹, Uetanabaro APT¹, Nicoli JR², Marinho EAV ¹UESC, ²UFMG

03.026 Ayahuasca blocks the expression of methylphenidate-induced conditioned place preference in mice: Behavioral and Fos protein expression evaluations. Serra YA¹, Reis HS¹, Santos AA¹, Henriques GM¹, Rodrigues IRS¹, Lima AJO¹, Yokoyama TS², Cruz FC², Berro LF, Marinho EAV ¹UESC. ²Unifesp

03.027 Effects of repeated methylphenidate treatment in mice's childhood on place preference conditioning in their adult life. Leite JPC, Campos DO, Dias Júnior BC, Silva AA, Brito ACL, Pereira JLA, Marinho EAV, Lima AJO UESC

04. Inflammation and Immunopharmacology

04.030 Comparative study of T lymphocyte activity in different murine models of experimental Type 1 Diabetes mellitus. Queiroz LAD, Guimarães JPT, Assis JB, Sousa ESA, Martins JO, Sá-Nunes AD USP

04.031 Oleic acid into semisolid dosage forms reduces UVB-induced skin inflammation via glucocorticoid receptors. Pegoraro NS, Camponogara C, Cruz L, Oliveira SM UFSM

04.032 Uvaol attenuates inflammatory functions of macrophages by inhibits M1-like phenotype and NF-Kb signaling. Cavalcante-Araújo PM¹, Lagente V², Barreto E^{1 1}UFAL, ²University of Rennes

04.033 ERK5 mediates TGF-β signaling and shapes autoimmune inflammation. Prado DS, Damasceno LEA, Ferreira RG, Rosa MH, Cunha TM, Cunha FQ, Ryffel B, Waisman A, Alves-Filho JC FMRP-USP

04.034 Purinergic signaling converts N-acetylserotonin into the pineal darkness hormone. Sousa KS, Quiles CL, Ferreira ZFS, Markus RP USP

04.035 A hydrogen sulfide (H₂S)-releasing dexamethasone derivative with antioxidant activity attenuates the development of atopic dermatitis in mice. Coavoy-Sánchez SA¹, Teixeira SA¹, Cerqueira ARA¹, Santagada V², Caliendo G², Costa SKP¹, Severino B², Muscará MN^{1 1}USP, ²Università degli Studi di Napoli Federico II

04.036 Methyl cinnamate attenuates inflammatory and pathophysiological parameters in elastaseinduced emphysema in mice. Carmo JOS¹, Nascimento LMPS¹, Correia ACC², Cartaxo TN¹, Ferro JNS¹, Barreto E¹ ¹UFAL, ²UPE

04.037 Role of estradiol and progesterone on allergic lung inflammation previously induced in female obese mice. Umana ERP¹, Oliveira MA¹, Ribeiro MR¹, Moriya HT², Alves VF¹, Rigonati CA¹, Gama P¹, Lima LS¹, Scavone C¹, Oliveira-Filho RM¹, Vasquez YR³, Lima WT, Prado CM² ¹ICB-USP, ²USP, ³King's College

04.038 The effect of obesity and female sex hormones on the experimental asthma model with neutrophil predominance. Ribeiro MR¹, Oliveira MA¹, Umaña ER¹, Alves VF¹, Moriya HT², Sá-Lima LS¹, Scavone C¹, Riffo-Vasquez YR¹, Oliveira-Filho RM¹, Lima WT¹ ¹ICB-USP, ²USP, ³King's College

04.039 Effects of treatment with the PGD2 receptor antagonist TM30089 on mouse allergic inflammation. Tavares EBG, Andre DM, Medeiros ML, Oliveira MG, Antunes E Unicamp

04.040 Protease-activated receptor (PAR)2 mediates LPS-induced pro-inflammatory repertoire in murine macrophages. Barra A, Brasil AF, Florentino RM, Leite MFL, Capettini LSA, Klein A UFMG

04.041 Inflammatory profile of first-episode psychosis: Preliminary findings on the interaction between cannabis consumption and childhood maltreatment. ¹Corsi-Zuelli F, ¹Marques L, ¹Roza DL, ¹Shuhama R, ¹Loureiro C, Menezes PR², ¹Louzada-Júnior P, ¹Del-Ben CM ¹FMRP-USP, ²FM-USP

04.042 Paraprobiotics prevent the development of irinotecan-induced intestinal mucositis in mice. Nobre LMS, Cajado AG, Lopes MHS, Ribeiro LR, Geraix J, Wong DVT, Lima-Palheta Júnior RC UFC

04.043 Antitumor effects of macrophages activated by non-cytotoxic sulfated polysaccharides from brown algae *Dictyota caribaea*. Assef ANB¹, Celestino RCA², Santos GRC¹, Mourão PAS², Cinelli LP², Wilke DV¹, Teles FB^{1 1}UFC, ²UFRJ

04.044 Role of toll-like receptor (TLR)3 in lung fibrosis triggered by silica particles in mice. Sa YAPJ¹, Ferreira TPT¹, Ribeiro NBS¹, Correa AMC¹, Oliveira TAL¹, Alves-Filho JCF², Hogaboam C³, Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²FMRP-USP, ³Cedars-Sinai

04.045 The H3/H4 receptor antagonist LINS01007 attenuates the effects of lung allergic response in murine model. Balbino AM Unifesp-Diadema, Fernandes JPSF, Corrêa MF, Lippi BK, Fernandes GAB, Negreiros NGS

04.046 Insulin modulates pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice. Martins JO¹, Ferreira SS¹, Oliveira MA², Tsujita M¹, Casagrande FB¹, Gomes E², Russo M², Lima WT², Nunes FPB¹ ¹FCF-USP, ²ICB-USP

04.048 AT1 Receptor blockade attenuates tissue destruction and bone volume loss in rats with experimentally-induced periodontitis. Ferreira C¹, Dionisio TJ¹, Souza GP¹, Colombini-Ishikiriama BL¹, Garbieri TF¹, Parisi VA¹, Oliveira GM¹, Oliveira SHP² ¹USP, ²FOA-Unesp

04.049 Effect of Patchouli (*Pogostemon cablin*) essential oil on the zymosan-induced arthritis model. Silva-Filho SE¹, Maranhão IF¹, Hamaji MP¹, Cardia GF², Wiirzler LA², Silva-Comar FM², Bersani-Amado CA², Cuman RKN^{2 1}UFMS, ²UEM

04.050 The effects of aging on the production of hydrogen sulfide (H₂S) in the murine skin. Teixeira SA¹, Gomes GL¹, Rodrigues L¹, Cerqueira ARA¹, Alves KB¹, Oliveira L¹, Nascimento N¹, Silva GB¹, Akamine E¹, Whiteman M², Muscará MN¹, Costa SKP^{1 1}USP, ²University of Exeter

04.051 Mitochondrial pyruvate carrier regulates inflammation and fever in rats. Souza FHV, Guimarães NC, Alves DS, Gomes BRB, Vilela WR, Sousa MV, Bem AF UnB

04.052 Platymiscium floribundum Vog decreases bone degradation and modulates the levels of inflammatory mediators during periodontitis in rats. Freire JMO¹, Chaves HVC¹, Sousa NA², Teixeira AHT¹, Sousa LH¹, Pinto IR¹, Nascimento Júnior MV¹, Costa JJN¹, Portela LR¹, Lima MAS¹, Pimenta ATA¹, Bezerra MMB^{1 1}UFC-Sobral, ²UFPI

04.053 Chitosan-based biomaterials benefit healing of lesions in rats. Pires CS, Souza AH, Gaissler V, Scholl S ULBRA

04.054 Down regulation of macrophages might contribute to the refractoriness of ACKR2 knockout mice to silica-induced chronic lung inflammation. Correa AMC¹, Dias DF¹, Oliveira TAL¹, Sa YAPJ¹, Simões RL², Barja-Fidalgo TC², Cyrino FZGA², Bouskela E², Martins MA¹, Martins PMRS¹ ¹Fiocruz, ²UERJ

04.055 Study of the leishmanicidal activity of *Bauhinia forficata*, *Punica granatum*, *Eugenia uniflora*, and *Persea americana*. Nunes ICM, Ferreira SCA, Albuquerque LWN, Alves AA, Moreira MSA, Santos MS, Leite AB, Silva AE, Queiroz AC UFAL

04.056 Repeated exposures to polyinosinic-polycytidylic acid, a Toll-like receptor 3 agonist, causes glucocorticoid-insensitive airway hyper-reactivity and inflammation in A/J mice. Procópio CAM, Santana ACC, Sa YAPJ, Nascimento ALD, Gomes HS, Coutinho DS, Ferreira TPT, Martins PMRS, Martins MA Fiocruz

04.057 Characterization and membrane expression of Siglec receptors on human monocytes. Silva PCS, Formiga RO, Amaral FC, Spiller F UFSC

04.058 Effect of the Biochanin A on inflammatory in obese ovariectomized mice. Araújo LFLMF¹, Almeida RG¹, Araújo JMD¹, Santos WM¹, Camargo EA, Neres WS¹, Félix FB^{2 1}UFS, ²UFMG

05. Pain and Nociception Pharmacology

05.013 Investigation of antinociceptive potential of synthetic 4-Aminoquinoline derivatives. Moura IG, Silva SMA, Viana MDM, Moreira MSA, Meneghetti MR, Campesatto EA UFAL

05.014 Mitochondrial dysfunction in a fibromyalgia-like symptoms model in mice. Brum ES¹, Fialho MFP¹, Hartmann DD¹, Gonçalves DF¹, Fischer SPM¹, Scussel R², Machado-de-Ávila RA², Dalla Corte CL³, Soares FAA¹, Oliveira SM^{1 1}UFSM, ²Unesc, ³Unipampa

05.015 Correlation between metabolic syndrome and migraine: the role of adipokines and omega-**3**. Barbosa IR, Dagnino APA, Cunha GD, Campos MM PUC-RS

05.017 Synergy and Additivity Between Cannabinoidergic, Opioidergic and Adrenergic Systems in the modulation of peripheral nociception in mice. Lopes C¹, Santos-Silva T², Fonseca F¹, Castro-Júnior C², Romero T^{2 1}USP, ²UFMG

05.018 Antioxidants antinociceptive effect in animal model of oxaliplatin-induced peripheral neuropathy is associated with decreasing oxidative damage and inflammation in the spinal cord. Agnes JP, Gonçalves RM, Delgobo M, Macedo SJ, Ferreira J, Zanotto-Filho A UFSC

05.019 The activation of cannabinoid receptors inhibits the development of oxaliplatin-associated neurotoxicity in mice. Pereira AF, Lisboa MRP, Alves BWF, Silva CMP, Dias DBS, Menezes KLS, Cesario FRAS, França JC, Oliveira AR, Alencar NMN, Lima-Júnior RCP, Vale ML UFC

05.020 Increase of kynurenine 3-monooxigenase in the spinal cord astrocytes mediates the maintenance of neuropathic pain. Maganin A, Souza GS, Lopes AHP, Silva RL, Gomes FIF, Alves-Filho JCF, Cunha FQ, Cunha TM FMRP-USP

05.021 Photobiomodulation in the treatment of inflammation and muscular pain. Oliveira CGDO, Chacur M, Giorgi R USP, IBu

05.022 Local effects of natural alkylamides from *Acmella Oleracea* and synthetic isobutylalkyl amide on neuropathic and postoperative pain models in mice. Werner MFP, Souza LMD, Maria-Ferreira D, Luz BB, Nascimento AM, Cipriani TR, Dallazen JL UFPR

05.023 Antinociceptive activity of Priprioca (*Cyperus articulatus* var. nodosus L.). Moraes WP¹, Pereira AMNP¹, Pires TM¹, Moraes JC¹, Almeida Júnior JS, Lopes JMC, Barata LESB, Saroratto AS² Ufopa, Unicamp

05.024 Activities of neurons and glial cells are increased after hyperalgesia induced by platelet releasate by mechanisms dependent on P2X7 purinergic receptors. Giorgi R¹, Bom AOP¹, Francisco KM¹, Campos ACP², Santoro ML¹, Pagano RDLP^{2 1}IBu, ²Hospital Sírio Libanês

05.025 Therapeutic action of bergenin in an animal model of diabetic neuropathy. Almeida LS¹, Santos DS¹, Espírito-Santo RF¹, Nascimento OA¹, Juiz PJL², Alves CQ¹, David JM¹, David JPL¹, Soares MBPS³, Villarreal CF¹ 1UFBA, ²UFRB, ³CPqGM-Fiocruz

06. Cardiovascular and Renal Pharmacology

06.031 Endothelial dysfunction induced by inhibitors of gastric acid secretion. Lopes JMS¹, Nogueira RC¹, Parente JM¹, Paula GHO¹, Pinheiro LC², Castro MM¹, Santos JET^{1 1}USP, ²EERP-USP

06.032 Itaconimides derivatives induce vasodilation, negative inotropism and hypotension. Moraes RA¹, Alves QL¹, Camargo SB¹, Medeiros CFA², Hora VRS³, Jesus ADM³, Cechinel-Filho V⁴, Stiz DS⁴, Corrêa R⁴, Vasconcelos DFSA³ ¹Fiocruz, ²USP, ³UFBA, ⁴Univali

06.033 Omeprazole promotes vascular remodeling via upregulation of xanthine oxidoreductase and Matrix Metalloproteinase-2 Activity. Nogueira RC¹, Pinheiro LC², Lopes JMS¹, Parente JM¹, Conde SO³, Paula GHO¹, Castro MM³, Santos JET^{3 1}USP, ²EERP-USP, ³FMRP-USP

06.034 Renal vascular reactivity in sepsis: A putative mechanism for sepsis-induced kidney failure. Rosales TO, Nardi GM, Assreuy J UFSC

06.036 In vitro vasorelaxant activity of the mitochondria-targeted hydrogen sulfide (H₂S)-donor **AP39 on murine mesenteric artery rings**. Marques LAC¹, Teixeira SA¹, Torregrossa R², Whiteman M², Costa SKP¹, Muscara MNP^{1 1}ICB-USP, ²University of Exeter

06.038 Inhibition of acetylcholinesterase promotes alterations on cardiovascular autonomic control and aortic vascular reactivity in L-Name-induced hypertensive rats. Cavalcante GL¹, Ferreira FN¹, Sousa MF¹, Lima JVO², Furtado MM¹, Alves Filho FC¹, Silva MTB¹, Arcanjo DDR¹, Sabino JPJ¹ ¹UFPI, ²UNIFSA

06.039 Antiatherogenic effects of cyclic nucleotide modulators through NF-κB and p38 MAPK Inhibition in aortas of hypercholesterolemic rats. Motta NAV¹, Lima GF¹, Lopes RO¹, Mendes ABA², Autran LJ¹, Brazão SC¹, Marques EBM¹, Kümmerle AEK³, Barreiro EJB², Scaramello CBVS¹, Brito FCF ¹UFF, ²UFRJ, ³UFRRJ **06.040 Influence of perivascular adipose tissue in vascular dysfunction of sepsis**. Barp CG, Benedet PO, Assreuy J UFSC

06.041 IL-1RI contributes to endothelial dysfunction, **vascular remodeling and oxidative stress in Angiotensin II-induced hypertension**. Fedoce AG, Pereira CA, Aguiar CAS, Parente JM, Gonzaga NDA, Tostes RCA, Carneiro FS FMRP-USP

06.042 The flavonoid luteolin alters the production of prostanoids and nitric oxide by the venous endothelium. ¹Assunção HCR, Cruz YMC², Bertolino J¹, Fernandes L² ¹Unifesp, ²Unifesp-Diadema

06.043 Are echocardiographic changes addressed to neonatal leptin treatment related to different biochemical profiles in female Wistar rats? Souza KP, Pedro SS, Rocha NN, Scaramello CBV UFF

06.044 Effect of carvacrol on monocrotaline induced pulmonary hypertension in rats. Alves RMFR, Medeiros IA, Oliveira JCPL, Maciel PMP, Silva GNA, Santos PF, Azevedo FLAA, Gonçalves TAF UFPB

06.045 Perivascular tissue regulates the relaxation of umbilical cord veins in different nutritional states. Machado MR, Servian CDPS, Oliveira SCM, Filgueira FP, Costa RM, Lobato NS UFG

06.046 Combined inhibition of AT1 receptor and advanced glycation end products in the diabetic nephropathy. Flores EEI, Pereira ENGS, Silvares RR, Rodrigues KL, Araújo BPD, Martins CSM, Daliry A Fiocruz

06.047 Chronic ouabain administration modulates cardiac and renal membrane lipid content in **rats**. Quintas LEM¹, Garcia I², Feijó P¹, Araújo W², França-Neto A³, Rossoni L³, Barbosa L², Santos H² ¹UFRJ, ²UFSJ, ³USP

06.048 Anticontractile effect of perivascular adipose tissue is enhanced by stimulated hydrogen sulfide formation and is ATP-sensitive potassium channel-dependent in hypertensive pregnant rats. Tozzato GPZ, Polonio LCC, Paula ES, Dias Júnior CA Unesp-Botucatu

06.049 The acute hypotensive and vasorelaxation effects of S-nitrosoglutatione has no involvement of cyclooxygenase pathway. Paula TC, Ferreira GC, Batista RIM, Santos JET FMRP-USP, USP

06.050 Hyperglycemia induces apoptosis of HEK 293 cells by reducing Nrf2 activity and oxidative stress. Costa RM¹, Silva JLM¹, Alves JV², Tostes RCA² ¹UFG, ²FMRP-USP

06.051 Hypotensive and vasorrelaxant effect of (-)-myrtenol in hypertensive rats. Mendes Neto JM, Maia MIA, Silva EAP, Feitosa MBJ, Santos SA, Amaral RG, Santos SL UFS

06.052 Potential effects of Matrix Metalloproteinase (MMP)-2 on the Sarcoplasmic Reticulum Calcium ATPase (SERCA) in hypertension-induced vascular dysfunction. Silva PHL¹, Mello MMB¹, Parente JM¹, Schulz R², Castro MM^{1 1}USP, ²University of Alberta

06.053 Protective effect of (-)-alpha-bisabolol in a model of acute kidney injury by ischemiareperfusion *in vitro*. Costa IV, Silva BP, Sampaio TL, Magalhães EP, Menezes RRPPB, Martins AMC UFC

06.054 Evaluation of the activity of SPRM12 on α **-adrenergic receptors and sex-related differences**. Silva SB, Alves SML, Silva WFP, Anjos JV, Araújo AV UFPE

06.055 Different pharmacological effect of SPRM09 on α-adrenergic receptors of male and female rats. Alves SML, Silva SB, Silva WFP, Anjos JV, Araújo AV UPE e UFPE

06.056 Pharmacological effects of β-methylphenylethylamine on isolated rat aorta. Pinheiro CG, Magalhães PJC, Oliveira DMN, Silva CAO, Gadelha KKL, Camilo KLA, Silva KL, Carvalho EF, Silva AAV UFC

06.057 Indol-3-Carbinol lowers blood pressure and improves vascular function in hypertensive rats. Arruda AVD¹, Cabral B², Gonçalves TAF¹, Rezende MSA¹, Oliveira JCPL¹, Azevedo FDLAA¹, Veras RC¹, Medeiros IA¹, Araújo IGA^{1 1}UFPB, ²UFRN

07. Endocrine, Reproductive and Urinary Pharmacology

07.012 The multidrug resistance protein inhibitor, MK571 reduces prostate smooth muscle contractility from obese mice and patients with benign prostatic hyperplasia. Bertollotto GM, Oliveira MG, Passos GR, D'Ancona CA, Antunes E, Mónica FZ Unicamp

07.013 TRPM8-activation improves the responsiveness of erectile tissue: A cool receptor with a cool activity. Jesus RLC¹, Araújo FA², Vasconcelos DFSA^{1 1}UFBA, ²CPqGM-Fiocruz

07.014 Effects of growth hormone on the motility of murine macrophages during aging. Porto FL, Reis MDS, Marques ALX, Borbely KS, Mendonça BS, Menezes CA, Smaniotto S UFAL

07.015 *In vitro* **sertraline effects on rat distal cauda epididymis contraction**. Melo AB, Samala M, Mateus F, Pontes THA, Gomes LTC, Gavioli EC, Silva Júnior ED UFRN

07.016 Seminal vesicle-secreted protein 2 (SVS2) reduces the motility of mouse spermatozoa *in vitro*. Andrade JJ, Mariani NAP, Silva AAS, Andrade ADA, Raimundo TRF, Kushima HK, Silva EJRS Unesp-Botucatu

07.017 Impact of antenatal dexamethasone treatment on cellular and molecular events during Wolffian duct morphogenesis. Sousa MED, Ribeiro CMR, Avellar MCW Unifesp-EPM

07.018 Lipopolysaccharide reduces urethral smooth muscle contractility independently of TLR4 activation: Implication of caspase-1 and cyclooxygenase activation. Calmasini FB¹, Alexandre EC¹, Oliveira MG¹, Silva FH¹, Soares AG², Costa SKP², Antunes E^{1 1}Unicamp, ²USP

07.019 Diuretic and renal protective effect of two natural xanthones in normotensive and hypertensive rats. Souza P¹, Mariano LNB¹, Boeing T¹, Silva RCMVA¹F, Cechinel-Filho V¹, Niero R¹, Silva LM², Andrade SF^{1 1}Univali, ²UFPR

07.020 Evaluation of benznidazole on epididimary sperm of mice. Mazaro-Costa R¹, Barbosa CCB¹, Nishimura ANN¹, Araújo AA¹, Carn CMC², Pinto LSRP² ¹UFG, ²UFOP

07.021 Atomic force microscopy and raman spectroscopy identification of biophysical and biochemical differences of trophoblast cells treated with uvaol to ameliorate Group B streptococcus deleterious effects. Tenório LPG¹, Silva ECOS², Marques ALX¹, Allard MJ², Bergeron JDB¹, Sebire G², Souza ST¹, Fonseca EJS¹, Borbely AU¹, Borbely KS^{1 1}UFAL, ²Université de Montréal

07.022 Investigating the mechanism of action and function of innate immunity components in the morphogenesis of the epididymis. Nishino FA, Ferreira LGA, Ribeiro CM, Avellar MCW Unifesp-EPM

08. Respiratory and Gastrointestinal Pharmacology

08.015 Essential oil of *Dysphania ambrosioides* L exhibits negative modulation of peristaltism and antisecretory effects in gastrointestinal tract of mice. Lima JVO¹, Cavalcante GL², Sousa CFAJ², Sousa RGC², Figueredo JS², Oliveira GR¹, Britto MHRM², Sousa JAD^{1 1}UNIFSA, ²UFPI

08.020 Evaluation of antidiarrheal and gastroprotective activity of \alpha-asarone in animal models. Serafim CAL, Alves Júnior EB, Pessoa MLS, Batista LM UFPB

08.021 Evaluation of the gastroprotective activity of a pharmaceutical form with extract from the leaves of *Spondias mombin*. Araruna MEC¹, Santos VL², Medeiros ACD², Medeiros FD², Rêgo RIA², Silva PR² ¹UFPB, ²UEPB

08.022 The study of the possible effect from the *Melissa officinalis* ethanolic extract on the gastrointestinal secretion of Mus muscullus. Sousa CFAJ¹, Sousa RGC¹, Lima JVO², Oliveira GRD², Ferreira LVA², Oliveira IS³, Britto MHRM², Sousa JA^{2 1}UFPI, ²UNIFSA, ³Facid

08.023 Treatment with L-cysteine ameliorates oral mucositis induced by 5-fluorouracil in hamsters. Oliveira AP¹, Fonseca KM¹, Sousa FBM², Carvalho JL¹, Lopes ALF¹, Costa MDR³, Silva VF³, Silva BM³, Leitão RFC³, Cerqueira GS³, Medeiros JVR¹ ¹UFPI, ²UniNassau, ³UFC

08.024 Polymeric nanoparticles as a sodium alendronate release vehicle in rats: effective study and gastrointestinal toxicity. Iles B, Pacheco G, Nolêto IRSG, Sousa GC, Oliveira ACP, Alencar MS, Araújo AR, Dourado FF, Ribeiro FOS, Silva DA, Medeiros JVR UFPI

08.025 Anti-inflammatory and antibacterial activities of new substituted n-acylidrazonic derivatives. Ramos KRLP¹, Borba EFO¹, Silva JDAG¹, Sousa RS¹, Santos VL², Moura RO², Silva TG ¹UFPE, ²UEPB

08.026 An optimized method to evaluate expectorant drugs in mouse model. Menezes PMN¹, Brito MC², Sá PGS², Ribeiro LAA², Rolim LAR², Silva FS² ¹Renorbio, ²UNIVASF

08.028 Metformin promotes gastroprotection on alendronate-induced gastric damage in normoglycemic and hyperglycemic rats. Nolêto IRSG¹, Iles B¹, Alencar MS¹, Lopes ALF¹, Oliveira AP¹, Pacheco G¹, Sousa FBM², Sousa NA¹, Chaves LS¹, Medeiros JVR¹ ¹UFPI, ²UniNassau

08.029 Antidiarrheal activity of the ethanolic extract of *Terminalia fagifolia* Mart & ZUCC in cholera toxin-induced diarrhea model. Sousa IJO, Silva VG, Costa DS, Pacheco G, Gomes JPS, Medeiros JVR, Meneses Oliveira RC UFPI

08.030 Vascular alterations induced by experimental asthma. Castro PFS¹, Clemente LP¹, Abreu LB¹, Ribeiro MTL², Rocha ML² ¹UEG, ²UFG

08.031 Protective effect of *Lonchocarpus araripensis* lectin in the mechanical respiratory dysfunction induced by polymicrobial sepsis in rats. Pires AF¹, Silva DHM², Assreuy AMS², Belo LMC¹, Rebouças BDS², Lopes MR², Laranjeira EPP¹, Sousa ARC², Holanda AAC¹, Cavalcante FSA², Cavada BSC^{3 1}Estácio, ²UECE, ³UFC

08.032 Adenosine receptors blockage potentiates the relaxant effects of β 2-adrenoceptor agonists in rat tracheal smooth muscle. Pacini ESA, Freitas BA, Godinho RO Unifesp-EPM

08.033 Mechanisms of action involved in the anti-motility effect of (-) - fenchone in mice. Silva LMO, Silva AO, Alves Júnior EB, Serafim CAL, Pessoa MLS, Araruna MEC, Batista LM UFPB

08.034 Evidence that treatment with NaHS (A Hydrogen Sulfide Donor) ameliorates oral mucositis induced by 5-fluorouracil in hamsters. Pinho SS¹, Carvalho JL¹, Fonseca KM¹, Sousa FBM², Oliveira ACP¹, Sousa GC¹, Oliveira AP¹, Araújo AKS¹, Lopes ALF¹, Medeiros JVR¹ ¹UFPI, ²UniNassau

08.035 Antioxidant effect of McLTP1 in the experimental model of intestinal mucosite induced by irinotecan. Costa AD, Carmo LDD, Rangel GFP, Campos DCO, Costa AS, Oliveira HD, Alencar NMN, Rabelo LMA, Duarte RS UFC

08.036 Polymeric nanoparticles carried with bixin prevent pulmonary oxidative stress and inflammation induced by cigarette smoke in murine model. Figueiredo Júnior ATF, Lanzetti MLDD, Valença SS, Finotelli PV, Anjos FF UFRJ

08.037 Eugenol modulates rat alveolar macrophages activity exposed to cigarette smoke. Oliveira MCB¹, Gonçalves MH¹, Silva FAC¹, Lanzetti M², Valença SS², Silva FS¹, Lima EKF^{1 1}UFERSA, ²UFRJ

09. Natural Products and Toxinology

09.043 Bioactive Fraction of *Eugenia selloi* (Pitangatuba), a Brazilian native superfruit, decrease the inflammatory process by suppress the NF-κB activation. Lazarini JG¹, Soares JC², Franchin M¹, Nani BD¹, Massarioli AP², Alencar SM², Rosalen PL^{1 1}Unicamp, ²USP

09.046 Effect of the mixture of Triterpenes alpha, **beta-amyrin in the prevention of non-alcoholic fatty disease in mice**. Lima RP¹, Nunes PIG¹, Viana AFSC¹, Oliveira FTB¹, Silva RAC¹, Freire GP¹, Silva AVL¹, Moreira TS¹, Carvalho AA², Chaves MH², Santos FA^{1 1}UFC, ²UFPI

09.047 Brazilian Red Propolis - HPLC Characterization and Perspectives for Use In Periodontal Diseases. Alves AKS, Silva IMA, Nascimento TG, Penteado LAM, Porto ICCM UFAL

09.048 Mechanistic clues of cardioprotective actions induced by hydroalcoholic extract from leaves of *Alpinia zerumbet* on myocardial infarction in rats. Bernardino AC, Paulino ET, Silva JCG, Rodrigues AKBF, Oliveira KRV, Machado MLDP, Vieira SP, Oliveira WS, Santos JCC, Araújo Júnior JX, Ribeiro EAN UFAL

09.049 Antioxidant potential of *Maclura tinctoria* heartwood extract using Rhamdia quelen experimentally infected with *Aeromonas hydrophila*. Rodrigues P¹, Pires LC¹, Souza CF¹, Coldebella R¹, Garlet Ql², Pedrazzi C¹, Baldisserotto B¹, Heinzmann BM^{1 1}UFSM, ²FURG

09.050 Effect of essential oil of *Alpinia zerumbet* **on vascular reactivity of isolated rat resistance arteries**. Rocha DG, Holanda TM, Silveira JAM, Maia PHF, Moraes MEA, Fechine-Jamacaru FV, Moraes Filho MO UFC

09.051 Braylin-induced relaxant effect in the corpus cavernosum involves NO/sGC pathway. Araújo FA¹, Jesus RLC², Costa RS², Souza Filho OP², Velozo ES², Vasconcelos DFSA² ¹CPqGM-Fiocruz, ²UFBA

09.052 Study of the yield and evaluation of the acute toxicity of the essential oil of *Piper* marginatum Jacq in mice. Lopes DCC, Pereira KDS, Sousa KTS, Castro KCF, Moraes TMP, Moraes WP, Lopes JMC, Moraes JC Ufopa

09.053 Therapeutic potential of a physalin-rich *Physalis angulata* extract in a mouse model of periodontal disease. Lauria PSS¹, Vieceli PS¹, Juiz PJL², Pereira RR¹, Couto RDC¹, Nogueira RC³, Tomassini TCB⁴, Ribeiro IM⁴, Soares MBP³, Villarreal CF^{1 1}UFBA, ²UFRB, ³CPqGM-Fiocruz, ⁴Fiocruz

09.054 Antioxidant activity-mediated neuroprotective effects of the novel ocellatins, a class of peptides from the skin secretion of the South American frog, *Leptodactylus vastus*. Sousa NA¹, Oliveira GAL¹, Oliveira AP¹, Lopes ALF¹, Iles B¹, Araújo AR¹, Araújo TSLA¹, Nogueira KM², Placido A³, Portugal C³, Socodato R³, Relvas J³, Eaton P³, Leite JRSA⁴, Medeiros JVR^{1 1}UFPI, ²UFC, ³Universidade de Lisboa, ⁴UnB

09.055 Larvicida and antioxidant activities of semi-purified samples of *Eplingiella fruticosa* Salzm. Ex. Bent leaves. Souza JD¹, Shan AYKV², Graça AS¹, Moraes SZC¹, Almeida SM¹, Mota DCS¹, Lima MRF², Santana AEG², Araújo SMS¹, Mota KO², Santos A¹, Araújo BSA¹, Souza SBS³, Estevam CDS¹ ¹UFS, ²UFAL, ³Unit

09.056 *In vitro* **activity of a hydric extract of** *Physalis angulata* **against** *Trypanosoma evansi*. Povaluk AP, Cabral PFA, Borges GK, Miletti LC, Bastos-Pereira AL UESC

09.057 Phytochemical profile and cytotoxicity of the organic extracts from *Miconia pyrifolia* Naudin on leukemia cells. Borba EFO, Sousa RS, Silva JAG, Princival IMRG, Nerys LLA, Pereira PS, Lima GMD, Ramos KRLP, Leite TCC, Silva TG UFPE

09.058 Evaluation of the antinociceptive activity of *Cissus gongylodes* (**BAKER**) **Planch**. **fractions in mice**. Calazans MO, Perez ADC UFMG

09.059 Cardiovascular effects of d-limonene in rats. Santos MRV¹, Nascimento GA¹, Souza DS¹, Vasconcelos CML¹, Lima BS¹, Araújo AAS¹, Durco AO¹, Quintans-Júnior LJ¹, Almeida JRGS², Oliveira AP³, Barreto AS¹, Santana-Filho VJ¹ ¹UFS, ²UNIVASF, ³UFPI

09.060 Euterpe oleracea Mart. (açaí) extract downregulated renin angiotensin-system expression in visceral adipose tissue of obese mice. Bem GF, Barcellos I, Romão MH, Silva DLB, Soares RA, Oliveira BC, Ognibene D, Soares de Moura R, Costa CA, Resende AC UERJ

09.061 Study of estrogenic and antiestrogenic activity and reproductive toxicity in female rats treated with ethanol extract of *Ipomoea carnea*. Fernandes MZLCM, Silva MCSS, Fernandes MLM, Fernandes MLM, Costa LB, Barbosa JGC, Borba MMP, Cardoso JFSC, Mineiro ALBB UFPI

09.062 Antiulcerogenic activity of the dry extract of pods of *Libidibia ferrea* Mart. ex Tul. (Fabaceae). Wanderley AG¹, Prazeres LDKT¹, Aragão TP², Brito SA³, Almeida CLF⁴, Silva AD¹, Damasceno BPGL⁵, Rolim LA⁴ ¹UFPE, ²UPE, ³FSM, ⁴UNIVASF, ⁵UEPB

09.063 Loss of adhesion contributes to antimetastatic activity of proteases from *Vasconcellea* cundinamarcensis latex in murine melanoma. Dittz D¹, Nunes IP², Souza MK², Salas CE², Lopes MTP² ¹UFPI, ²UFPI, ²UFPIG

09.064 Sulfated polysaccharide fraction from marine algae *Gracilaria caudata* reduces mechanical hypernociception and inflammation during experimental arthritis in mice. Silva RO¹, Nascimento FG², Oliveira FFB³, Bingana RD³, Carmo LD³, Chaves LS³, Barros FCN³, Barbosa ALDR⁴, Freitas ALP³, Soares PMG³, Souza MHLP³, Medeiros JVR⁴ ¹UFPE, ²INTA, ³UFC, ⁴UFPI

09.066 Vasoprotective effects of piridoxamine, an inhibitor of advanced glycation end-products, in non-alcoholic fatty liver disease associated liver microcirculation disturbances. Silvares RR, Pereira ENGS, Rodrigues KL, Flores EEI, Daliry A Fiocruz

09.067 *Ilex Paraguariensis*: **A possible strategy to prevent Parkinson's disease**. Chitolina B, Barbisan F, Turra BO, Rosa TSM, Azzolin VF, Silveira AF, Cunha BSN, Ribeiro EE, Ribeiro EAM, Praia RS, Cruz IBM UFSM

09.070 Locomotor activity of *Maclura tinctoria* sapwood ethanolic extractin fish. Barbosa LB, Rodrigues P, Pires LC, Ferrari FT, Coldebella R, Pedrazzi C, Baldisserotto B, Heinzmann BM UFSM

09.071 Cardiovascular effects induced by fractions of extract of leaves from *Pereskia aculeate miller* in Spontaneously Hypertensive Rats. Lopes AAA¹, Paulino ET¹, Rodrigues AKBF¹, Bernardino AC¹, Silva JCG¹, Oliveira KRV¹, Machado MLDP¹, Pinto NC², Scio E², Ribeiro EAN^{1 1}UFAL, ²UFJF

09.072 Anti-inflammatory effects and acute toxicity investigation of *Campomanesia xanthocarpa* **Berg**. Seeds. Scatolin M¹, Petry F, Dall'Orsoletta BB¹, Anzollin G¹, Guzatti JGG¹, Morgan LV¹, Alves BO¹, Scapinello J¹, Oliveira JV², Dal Magro J, Müller LG ¹Unochapecó, ²UFSC

09.073 Vasorelaxant effect induced by coumarins in the superior mesenteric artery. Brito DS¹, Vasconcelos DFSA¹, Alves QL¹, Araújo RSA², Barbosa Filho JM^{3 1}UFBA, ²UEPB, ³UFPB

09.074 Anti-HIV potential for *Bidens pilosa* (Asteraceae). Araújo AO¹, Carvalho SNPB¹, Ferreira RCS¹, Fonseca SA² ¹UFAL, ²Cesmac

09.075 Comparison between the action of pyocyanin on the adhesion of *Escherichia Coli* **UFPEDA 224** and *Staphylococcus Aureus* **UFPEDA 02**. Oliveira BTM, Dourado TMH, Silva ACL, Travassos RA, Vasconcelos UVRG UFPB

09.076 Antioxidant and anticholinesterase effects of *Syzygium cumini*. Borba LA¹, Wiltenburg VD², Santos LD¹, Negri G³, Mendes FR^{3 1}Unesp, ²UFABC, ³Unifesp

09.077 Brazilian contribution to Toxinology: A Pharmaceutical perspective. Ferreira JPB, Pereira LL, Ovider IC, Sampaio TL UFC

09.078 Evaluation of antiparasitary activity using microemulsion of hydroethanolic extract of *Genipa americana* **L**. Souza SBS¹, Estevam CDS², Santos SB², Mota KO³, Santos LC², Silva AS², Santos PAL², Santos AM², Araújo BS², Texeira KCS², Dolabella SS^{2 1}Unit, ²UFS, ³UFAL

09.079 Evaluation of toxicity and healing potential of the essential oil from the leaves and stem of *Eucalyptus saligna* **Sm**. (**Myrtaceae**) in fibroblasts. Pontes FL, Nascimento IRC, Ameida IT, Santos MC, Carmo JOS, Ferro JNS, Campessato EA, Moura IGD, Moreira MSA, Silva Neto GJ UFAL

09.080 The hydroethanolic extract of vaccinium macrocarpon fruit (cranberry) reduces cutaneous inflammation in mice. Freire KS, Oliveira AS, Andrade AV, Carvalho MBT, Santana DG, Biano LS, Camargo EA UFS

09.081 Bioprospection of molecules with anticancer potential from microorganisms associated to the *Ascidian Euherdmania* sp. from the Ceará coast. Nogueira CN, Wilke DV, Florêncio KGD, Pinto FCL, Pessoa ODL, Canuto KM, Ribeiro PRV UFC

09.082 Sulphated polysaccharide from *Acanthophora spicifera* modulates oxidative stress and enhances defense mechanisms to prevent gastric damage in mice. Nascimento FGD¹, Damasceno SRB², Calixto SIS², Pereira Júnior LDC², Lima GC², Soriano EM³, Freitas ALP², Soares PMG², Souza MHLP², Medeiros JVR⁴, Silva RO^{5 1}INTA, ²UFC, ³UFRN, ⁴UFPI, ⁵UFPE

09.083 (-)-**Myrtenol Decreases Orofacial Inflammation and Nociception in Mice**. Oliveira JP¹, Abreu FF¹, Bispo JMM¹, Soares AG², Cerqueira ARA², Santos JR¹, Costa SKP², Camargo EA^{1 1}UFS, ₂USP

09.084 Optimization of the process of extraction of polyphenolic compounds from the stem bark of *Mimosa tenuiflora* (Willd.) Poiret. Santos MA, Morais SA, Santos J, Soletti JI, Balliano TL UFAL

10. Cancer Pharmacology

10.015 Cytotoxic potential of pacharin and bauhiniastatin-1 isolated from Bauhinia sp. on tumor cells. Souza SMD¹, Militão GCG¹, Bezerra DP², Santiago GMP³, Gois RWS³, Andrade PGF¹, Souza JLC¹, Silva VR², Santos LDS² ¹UFPE, ²UFBA, ³UFC

10.016 Melatonergic System, but NOT Melatonin Content, Determines Differences in the Viability of Human Urothelial Carcinoma Cell Lines. Quiles CL, Moreno MOC, Muxel SM, Kinker GS, Fernandes PACM, Markus RP USP

10.017 Antimigratory effect of a synthetic sulfonamide chalcone in metastatic melanoma cells (**B16-F10**). Araújo GS¹, Moura AF¹, Barros AB¹, Castro MRC², Peres CN², Marinho Filho JDB¹, Araújo AJ¹ ¹UFPI, ²UFG

10.018 Modulation of short-chain free fatty acid receptors FFA2 and FFA3 in breast cancer cells. Muradás TC, Campos MM PUC-RS

10.020 Essential oil of *Schinus terebinthifolius Raddi* leaves inhibits the growth of tumor in mice transplanted with sarcoma 180. Graça AS, Almeida SM, Mota DCS, Amaral RG, Santos SA, Menezes Filho RO, Souza JB, Moraes SZC, Nogueira PCL, Carvalho AA, Shan AYKV, Araújo BS, Estevam CDS UFS

10.021 The expression of cytoplasmic CCR7 (CCR7c) and mTOR associates with tumor relapse to chemotherapy and lower overall survival in Triple Negative Breast Cancer (TNBC). Cajado AG¹, Gurgel DC², Gomes-Filho JV¹, Pereira AC¹, Bandeira AM¹, Torres CS¹, Borges LFC¹, Pereira JFB¹, Uchôa PLO¹, Ferreira LMM¹, Silva PGB¹, Távora FR¹F, Wong DVT¹, Almeida PRC¹, Lima-Júnior RCP¹ ¹UFC, ¹ICC

10.022 Systemic risk analysis of a rich antitumoral fraction in clerodanic diterpenes. Amorim VR¹, Santos DB¹, Bolzani VS², Cavalheiro AJ², Machado KC¹, Almeida AAC¹, Silva JN¹, Sousa Neto BP¹, Ferreira PMP^{1 1}UFPI, ²USP

10.023 Drugs safe association set to Neoplasis – Focus in pharmacokinetics investigation (Pilot Group). Godoy ALPC¹, Silva LP¹, Neves FMF¹, Silva ACSS¹, Yamamoto PA², Moraes NV², Machado MCA¹, Estrela-Lima A¹ ¹UFBA, ²Unesp-Araraquara

10.024 Protective effect of *Senecio rhizomatus Rusby* (Llancahuasi) ethanolic extract on 7, 12dimethylbenz [a] anthracene (DMBA) induced breast cancer in female rats. Acevedo JLA, Guerrero HJJ, Torres JC, Asmat RJC, Calderon OH, Figueroa MC, Heredia JM, Macedo EC, Bustamante CG, Sandoval JA Universidad Nacional Mayor de San Marcos

10.025 Citotoxic and antimigratory potential of methanolic, hydroalcoolic and hexanic extracts of leaves of *Montrichardia linifera* (Arruda) Schott (Araceae). Pereira FIA, Pereira JIA, Silva DA, Barros AB, Marinho Filho JDB, Araújo GS, Araújo AJ UFPI

10.026 Evaluation of the cytotoxic and antitumour effects of the hydroalcoholic extract of Propolis Green. Araújo SMS, Menezes Filho RO, Mendes Neto JM, Graça AS, Moraes SZC, Souza JB, Amaral RG, Santos SA, Andrade LN, Carvalho AA UFS

10.027 Novel thiazacridine and imidazacrine derivatives and their binding behavior with bovine serum albumin. Tavares MAB, Souza GMM, Cavalcanti LAMN, Almeida SMV UPE

11. Clinical Pharmacology, Pharmacokinetics, Pharmacogenomics and Toxicology

11.011 Biochemical effects of a two-week exposure to Aflatoxin B1 and aspartame to Wistar rats. Silveira AR, Souto NS, Rosa EVF, Dassi M, Braga ACM, Vaz AA, Furian AF UFSM

11.012 A study of the hypothalamic-pituitary-adrenal axis in depression and its genetic vulnerability. Pereira SC¹, Figaro-Drumond FV², Menezes IC¹, Baes CW¹, Coeli-Lacchini FB³, Juruena MFP⁴, Lacchini R² ¹FMRP-USP, ²EERP-USP, ³FCFRP-USP, ⁴King's College

11.013 Population pharmacokinetics of magnesium sulfate in pregnant women with preeclampsia. Azeredo F¹, Costa T², Cunha MD², Ururahi M², Martins R², Oliveira A^{2 1}UFBA, ²UFRN

11.014 Limited sampling modeling for estimation of phenotypic metrics for CYP enzymes and the ABCB1 drug transporter using a cocktail approach. Ximenez JPB¹, Coelho EB¹, Cusinato DAC¹, Lanchote VL¹, Suarez-Kurtz G² 1USP, ²INCa

11.015 Pharmacokinetic assessment of two formulations of the anticancer drug Tamoxifen. Suarez-Kurtz G¹, Ximenez JPB², Bello MA¹, Obadia RM¹, Iocken FHS¹, Lanchote VL² ¹INCa, ²USP

11.016 Validation of bioanalytical methodology and pharmacokinetic evaluation of Amphotericin B in Wistar rats. Araújo JMS, Azeredo F, Santos VV, Pereira LC, Gomes CA UFBA

11.017 Non-clinical toxicity of the cashew gum (a complex heteropolysaccharide extracted from the exudate of *Anacardium occidentale* L.): Absence of adverse effects in Swiss mice. Oliveira ACP, Costa BNC, Araújo TSL, Pacheco G, Chaves LS, Pinho SS, Araújo AKS, Santos ES, Silva PC, Medeiros JVR UFPI

11.018 Evaluation of the importance of therapeutic drug monitoring in a Teaching Hospital in Salvador- BA. Santos LO, Carneiro TLGO, Noblat LACB, Azeredo F UFBA

11.019 The importance of primary care and strategies used to improve adhesion to tuberculosis treatment. Brandão CM, Fernandes G, Azeredo F UFBA

12. Drug Discovery and Development

12.010 Cardioprotective effects induced by alpha-terpineol from *Protium hepthaphyllum* against myocardial infarction in rats. Paulino ET¹, Rodrigues AKBF¹, Bernardino AC¹, Silva JCG¹, Machado MLDP¹, Oliveira KRV¹, Silva Júnior EF¹, Oliveira AP², Quintans-Júnior LJ³, Ribeiro EAN ¹UFAL, ²UFPI, ³UFS

12.011 Anticholinesterase-antimuscarinics: Study of dual agents aiming at application for Alzheimer's disease. Guimarães MJR¹, Viegas Júnior CV², Castro NG¹, Neves GA¹, Romeiro LAS³, Nascente LC^{3 1}UFRJ, ²Unifal, ³UNB

12.012 Synthesis, structural characterization, and antioxidant activity evaluation by DPPH method of Palladium-Benzodiazepine derivatives. Silva AV, Meneghetti MR, Correia WBZGB UFAL

12.013 Cationic unilamellar liposomes as a drug carrier system to increase the efficiency of LQM168 - A Potential Antitumor Hybrid Molecule. Lins SL, Santos PFD, Aquino TM, Abreu FC UFAL

12.014 Synthesis, structural characterization, and evaluation of anticonvulsant and antioxidant activities of Diazepam-Palladium(II) complexes. Correia WBZGB¹, Reys JRM¹, Oliveira MA², Gouveia DN², Quintans JSS², Quintans-Júnior LJ², Silva AMO², Gatto CC³, Meneghetti MR^{1 1}UFAL, ²UFS, ³UnB

12.015 Evaluation of the anti-inflammatory activity of sulphatate polymeracids of seaweed *Hypnea musciformis*. Nascimento HG, Silva Junior PN, Soares VVM, Benevides NMB UFC

12.016 Curcumin-nicotinamide cocrystal presents antinociceptive and anti-inflammatory activities in mice. Zilli GAL¹, Alves BO¹, Morgan LV¹, Ribas MM², Lanza M², Aguiar GPS¹, Oliveira JV², Müller LG ¹Unochapecó, ²UFSC

12.017 Structure-based nucleosome binding peptides for controlling cell function. Fernandes VA, Teles KT, Torres IT, Treptow WT, Santos GS UnB

12.018 *In vitro* **antiviral activity of crude and fractioned extracts of** *Hypnea musciformis* **against Zika virus**. Gomes MVSW, Souza TPMS, Silva SLOS, Brito IRR, Guedes EAC, Bassi EJ, Rodarte RS UFAL

14. Pharmacology: Other

14.011 Toxicogenetic evaluation of hydroxyureia associated with ascorbic acid in allium cepa model. Rêgo NTDS, Aguiar RPS, Melo APM, Marinho Filho JDB UFPI

14.013 Nanogels for Topical Drug Delivery: Development and Influence of Composition on Cutaneous Permeability. Mojeiko G, Lopes L ICB-USP

14.014 Pleotropic effects of Simvastatin in an experimental model of non-alcoholic fatty liver disease. Pereira ENGS, Martins CSM, Araújo BPD, Silvares RR, Flores EEI, Rodrigues KL, Daliry A Fiocruz

14.015 Validation of alternative method for the content/potency assessment of Botulinum Toxin Type A. Xavier B, Silva FS, Perobelli RF, Cardoso Júnior CDA, Cossetin LF, Escobar AF, Dalmora SL UFSM

14.016 Antioxidant evaluation of hydroxiureia associated with ascorbic acid in model of *Saccharomyce cerevisiae*. Marinho Filho JDB, Rêgo NTDS, Aguiar RPS, Melo APM UFPI

14.017 Genotoxic, mutagenic and enzymatic evaluation of hydroxyurea associated with ascorbic acid. Nascimento CC, Aguiar RPS, Melo AP, Marinho Filho JDB UFPI

14.018 Pharmacotherapy review of hematologic patients followed by antimicrobial stewardship program in a teaching hospital. Furtado IP, Freitas TC, Rodrigues ABF, Silva JCC, Pontes LB, Pereira CMP, Rodrigues JLN, Girão ES, Reis HPLC UFC

Lecture abstracts

Courses

Cell-based approaches in CNS (Abordagem baseada em célula no SNC). Carolina Demarchi Munhoz. Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, SP-Brazil.

The proper functioning of the neuron-microglia-astrocyte triad is fundamental for the maintenance of the central nervous system (CNS), since neurodegenerative and aging processes may be related to a "defective" cellular interaction between neurons and glial cells. Activation and recruitment of glial cells are complex processes and require well-organized intercommunication between neurons and glia as well as between glial cells. The interconnectivity and the number of cells in specific brain regions could dictate the fate of such brain area after an insult. Also, the resilience of neurons could be particularly impacted in those contexts. Indeed, astrocytes in mixed, neuron- and astrocyte-enriched cultures have different responses to LPS and ischemic *in vitro* insults. In this activity, we will discuss the proof-of-concept of in vitro cell-based approaches that can provide helpful insights and potential treatment targets in distinct neurological and inflammatory diseases.

In vitro **and** *in vivo* **approaches to TBI** (*Abordagens* in vitro *e* in vivo *para o estudo do TCE*). Bonnie Firestein (Rutgers University, USA)

Traumatic brain injury occurs in approximately two million people each year. In Brazil, recent epidemiological studies demonstrate that traumatic brain injury results in considerable economic and health costs. For moderately and severely head injured patients, the long-term impairments are significant and a major contributor to traumatic brain injury morbidity. In contrast, most patients with mild traumatic brain injury recover within one year following the incident, but an estimated 10-15% of even these mild cases result in a long-term disability, including seizures, emotional and behavioral issues, and long-term neurodegenerative changes in the brain. Since traumatic brain injury includes injuries of multiple severities, there are several models in which to study the molecular mechanisms and drug targets for each type of traumatic brain injury. Here, I discuss the two main in vitro models of traumatic brain injury, stretch injury and glutamate-induced toxicity, and in vivo rodent models of traumatic brain injury, including lateral fluid percussion, weight drop, blast injury, and controlled cortical impact. These models can be modified to mimic mild, moderate, and severe traumatic brain injury. The models will be compared, and there will be discussion of the strengths and weaknesses of each model. For example, in vivo models are more expensive and variable while in vitro models are limited in their relevance to brain connectivity and effects on multiple central nervous system cell types. Overall, the use of multiple models in research will aid in a better understanding of molecular mechanisms that underlie neuronal injury and in easier discovery of therapeutic targets and treatments. Funded by New Jersey Commission on Brain Injury Research

Pharmacogenomics: Current Status and Perspectives (Farmacogenômica: Status Atual e

Perspectivas). Guilherme Suarez-Kurtz Rede Nacional de Farmacogenética, Instituto Nacional de Câncer

Pharmacogenetics/pharmacogenomics (PGx) relies on human genetic diversity to individualize drug therapy for greater efficacy with minimum or, ideally, no toxicity. It is well known that biogeographical ancestry (i.e. European, African or Native American) is a major determinant of genomic variation: this has been verified for PGx variants and must be taken into account in PGx studies and clinical implementation in Brazil and other Latin American countries. This course will explore various aspects of PGx, such as: Historical landmarks in PGx development; PGx

polymorphisms in drug metabolic pathways, transporters and drug targets. Rare versus common PGx variants. Population PGx: Brazil as a model case. PGx trials: gene-candidate and genome-wide association studies. Adoption of pharmacogenetics-informed prescription in clinical practice: challenges, current status and perspectives. I will present results from PGx studies carried out by members of the Brazilian Pharmacogenetics Network (www.refargen.org.br), involving anticoagulants, non-steroidal anti-inflammatory drugs, antitumoral and immunosupressant agents to illustrate the various topics covered in the course. Grant support: CNPq, DECIT/MS, FAPERJ

Methods for Cardiorenal Ethnopharmacological Research (Métodos para a pesquisa etnofarmacológica cardiorrenal). Arquimedes Gasparotto Junior (UFGD)

The use of medicinal plants in Brazil as a therapeutic resource is a very common practice among those with cardiovascular diseases, being used and disseminated by populations over several generations. Despite of ethno-knowledge, ethno-pharmacological validation is an extremely necessary conduct to ensure the safe and effective use of these natural products, and also to target the most promising species for in-depth pharmacological studies and controlled clinical trials. So, the aim of this course is to provide an integrated vision of all the necessary steps for a detailed ethno-pharmacological research on the cardiorenal system. The methodology used aims to address the ethnobotanical criteria for the selection of the natural product, the morphoanatomy of the species and the phytochemical characterization of the preparation. In addition, it addresses the toxicity potential of the species under study and emphasizes the most used methodologies to evaluate diuretic, antihypertensive and antiatherosclerotic potential, as well as clinical conditions such as heart failure and acute myocardial infarction. Finally, it intends to present current models that are intended to evaluate the association of multiple risk factors for cardiovascular diseases, such as diabetes, hypertension, high fat diet, alcohol and tobacco consumption.

Understanding Zebrafish creation and management (Entendendo a criação e o gerenciamento de Zebrafish). Monica Valdyrce dos Anjos Lopes Ferreira (IBu)

Danio rerio is a small tropical fish popularly known as paulistinha or zebrafish by the scientific community. Originated from the main rivers of India, Bangladesh and Nepal, it is commonly found in shallow, standing or low moving water with submerged aquatic vegetation and mud. The species is gregarious, being usually found in shoals of 5 to 20 fishes of males and females mixed individuals. They live in waters that can undergo large temperature variations $(16 - 38 \degree C)$ and pH (5.9 - 8.5). Zebrafish can feed on a wide variaty of zooplanktons and small insects and it is classified as a bony fish, with its axial skeleton including spine and unpaired flippers. Under properly conditions, they reproduce continuously during sexual maturity and their great fertility rate is one of its main characteristics. The effectiveness of the mating protocol will determine the amount of viable embryo production. The quality of the water and nutrition are two of the main factors in creating zebrafish. The fish should be kept at high temperatures and the tanks and breeding systems should be equipped with thermostats and heaters to maintain the ideal water temperature around 28.5 °C. The pH should be maintained around 7.0 to 7.5 and the conductivity between 400 and 700 μ S. Nitrogen compounds are also detrimental to fish and deserve close supervision. Ammonia, nitrate and nitrite are products of nitrogen excreta or food decomposition that can compromise the quality of tank water and breeding systems. Therefore, the effectiveness of the biological filter is of fundamental importance. In short, good practice will lead to successful creation of zebrafish.

Zebrafish as screening model for detecting toxicity and gabaergic drugs efficacy (Zebrafish como modelo de triagem para a detecção de toxicidade e eficácia de drogas gabaérgicas) Adriana Ximenes da Silva. Universidade Federal de Alagoas. Instituto de Ciências Biológicas e da Saúde. Zebrafish (Danio rerio) has proven to be a model of excellence for the screening of therapeutic drugs, disease modeling, and toxicity studies. Due to its small size (3–5 cm), high fecundity and

rapid development (embryonic to early larval stage in 72h) when compared to rodents, it is a model of choice in developmental studies. Zebrafish is used as a model standard for toxicity testing methods (FET test - fish embryo test) defined in guidance from the ABNT (Brazilian Association of Technical Standards) and OECD (Organization for Economic Cooperation and Development). Gamma-Aminobutyric Acid (GABA) is the main inhibitory neurotransmitter in the developmentally mature vertebrate central nervous system. However, during the CNS maturation this neurotransmitter acts as an excitatory neurotrophic factor, which emphasizes the important role of GABA neurotransmission during brain development. Changes in the gabaergic system, specifically via GABA_A receptors, are associated with some neurological pathologies - such as anxiety, chronic pain and epilepsy - and psychiatric disorders - such as Alzheimer's disease and schizophrenia. Experiments carried out in our laboratory using GABA derivatives synthesized by the Kolbe Laboratory of Organic Synthesis of the Federal University of Rio Grande have shown that GABA derivatives act on CNS according to developmental stages. Toxicity tests in embryos and adult animals were performed to determine the LC50 of each GABA derivatives selected for the definitive test. Behavioral and morphological changes found in embryos and adult zebrafish after GABA derivates toxicity test will be presented during the conference. Apoio Financeiro: ICBS/PROPEP/UFAL

Kinetics of drug-receptor interaction and residence time (Cinética da interação fármaco-receptor e tempo de residência) François Noël (Lab. Farmacologia Bioquímica e Molecular – ICB/UFRJ) In this class, we will discuss the kinetics of drug binding to its receptor, focusing on the concept of "drug-target residence time", and its importance for the discovery and development of drugs in terms of duration of effect, efficacy and selectivity. We will also make some practical considerations on experimental protocols used, such as the competition association assay (binding) and the jump-dilution assay (enzyme kinetics), based on our experience.

Kinetics of the activation of signaling cascades and functional selectivity (Cinética da ativação de cascatas de sinalização e seletividade funcional). Claudio M. Costa Neto (USP-RP) In this class, we will discuss the kinetics of distinct signaling pathway, from the most upstream to the most downstream events, and how they integrate in into a broader view. We will also discuss the kinetics aspects for designing assays. For instance, we'll discuss the influence of time when evaluating functional selectivity of a given drug, and how to overpass such drawbacks.

Integrating pharmacokinetics and pharmacodynamics *in vivo* (Integrando farmacocinética e farmacodinâmica *in vivo*). Teresa Cristina Tavares Dalla Costa (UFRGS)

In this class, we will discuss the influence of time on the observation of *in vivo* pharmacological effects and the temporal relationship between pharmacokinetics and pharmacodynamics (PK/PD) in situation of direct and indirect response, as well as direct and indirect PK/PD relationship (hysteresis, proteresis and effect compartment).

On the selection of the appropriate statistical test to analyze my experimental data (Como selecionar o teste estatístico apropriado para analisar meus dados experimentais?) Leandro Jose Bertoglio (UFSC)

In the initial class, we will discuss the main prerequisites that should be taken into account in order to select the most appropriate parametric (or non-parametric) statistical test to analyze experimental data that are commonly obtained in pharmacology. It will also be commented on strategies that can be adopted when the data do not meet the prerequisites of the parametric test (e.g. transformation of the raw data into logarithm) and what are the pros and cons of the various available post-hoc tests used to conduct multiple comparisons in experiments with more than two experimental groups. To do so, we will initially review the steps of the scientific method and the importance of adopting it, which are measures of central tendency and dispersion, what types of

76 51st Brazilian Congress of Pharmacology and Experimental Therapeutics

variables and experimental groups, what are normal data distribution and homogeneity of variance, and how the order of analysis of these aspects varies according to the statistical software adopted.

Why the p-value matters? (Por que o valor de "p" importa?). Janaina Menezes Zanoveli (UFPR) In this class two important themes will be discussed: Statistical hypothesis tests and the real importance of p-value in the statistical and biological significance of experimental data that are commonly obtained in Pharmacology. In this way, important definitions of the subject will be presented, such as definition of probability, null hypothesis and alternative hypothesis, p-value, and what is the hypothesis test and its relation to statistical inference. Moreover, the limitations of these applications and the main current criticisms regarding hypothesis tests, the exaggerated importance given to p-value, and the lack of reproducibility of data obtained in Pharmacology will be discussed in this lesson. Finally, it will be commented on possible solutions to overcome these limitations that involve the overestimation of the p-value in statistical inference.

Meta-analysis: Principles, applications and limitations (Meta-análise: princípios, aplicações e limitações) Cilene Lino de Oliveira (UFSC)

In this lecture will be discussed the principles, applications and limitations of meta-analysis. Metaanalysis refers to statistical methods to combine data from different studies useful to estimate the effect size, heterogeneity or risk of bias in a research field. Meta-analytic data are considered more reliable providing higher level of evidence to decision making than individual studies. In pharmacology, meta-analysis may help, for example, to estimate the effect of a particular drug in different experimental settings or the effects of different drugs on a specific type of experimental setting. More precise data may help to create stronger hypothesis and more reliable projects. Although useful to estimate risks of bias, meta-analysis is susceptible to the biases from the field of research and may reproduce or inflate bias with more severe consequences than individual studies.

Use of animals of different sizes in the production of immunobiologicals and drugs (Uso de animais de diferentes portes na produção de imunobiológicos e fármacos) Marcelo Abrahão Strauch (IVB) The challenge of producing new therapies and drugs at different stages to the present, still can't take the definitive step without the use of animal experimentation. In addition, besides contributing with the safety and quality in the development of drugs, the use of animals is also a source of serum, immunoglobulins and the same hemostatic or complementary agents in the different therapies administered to humans and animals. Large animals are used as bioreactors in the production of active principles since the beginning of the 20th century, be in the production of humanized proteins or in the production of heterologous proteins. In the treatment of some diseases that require multiple dosages and chronic treatment, humanized proteins are used. However, there are acute treatment diseases with unique dosages, in which heterologous proteins can safely be used, such as the polyclonal antibodies antitoxins obtained in horses and ruminants for the treatment of diseases such as rabies and tetanus, as well as accidents by venomous animals. In the present course we will discuss the production of antiapilic serum.

Conflicts and adequacy of analgesia, anesthesia and euthanasia in the experimental design with animals (Conflitos e adequação de analgesia, anestesia e da eutanásia no projeto experimental com animais). Paulo de Assis Melo (UFRJ)

The research in basic science, as in physiology and in pharmacology doing drug development, becomes a challenger if we decide to test new compounds in animals. This decision needs a good plan and the investigators also will need to get support about the biological data on the kind of animal that they decide to use. For each specie there are details that the institutional animal care and use committee (IACUC) will analyze, approve and recommend the best directions to succeed the investigation protocol. The development of new drugs is a challenger, because the investigator

needs to be aware that most of the result and effects first described in culture cells, need to be confirmed in animals before to move ahead and perform human tests. In animal experimentation it is mandatory evaluate animal behavior under anesthesia and the pain treatment in experimental conditions. It is always relevant to discuss the anatomical and physiological basis and the pathophysiology of pain with focus on animal perceptions and reactions. Learn about the basic manifestation and animal reaction to the tissue damage and the evaluation methods and techniques to measure acute and chronic pain. Another point to be aware is about the fundaments of pharmacodynamics and pharmacokinetic of the main group of drugs that have been used in the control of pain and anesthesia, as well euthanasia in animal experimentation. It will be mandatory to raise the positive and negative points of each drug, their limitations, and how to use and get the best of each agent, as well as, to avoid the common pitfalls of the misuse. Some animals can express the response to the noxious stimulus by a grimace or facial expression, other not. At the present, it is well known that the very difficult issues to discuss are: How to use pain killer drugs without interfere on the judgments or in the results of the investigation? How to learn and quantify the animal noxious response and acquire it. Finally, the endpoint deciding the right way to performer the best euthanasia method for each kind animal that the investigator decides to use in his work. Learn these basic and valorous steps will help to minimize suffering in animal experimentation.

Lectures

Regenerative Pharmacology – Drugs that Enhance Bone Healing through the Mobilization of Mesenchymal Stem Cells Sara M. Rankin IRD Section, NHLI, Imperial College London Funding from the Wellcome Trust and British Heart Foundation.

Drugs to mobilize haematopoietic stem and progenitor cells (HSPCs) from the bone marrow are used clinically to harvest HSPCs from the blood for bone marrow transplants. While G-CSF was used traditionally for this purpose, in approximately 20% of patients (poor responders) insufficient HSPCs were harvested for a BMT. We showed that G-CSF could act synergistically with the CXCR4 antagonist, AMD3100 (plerixafor). This drug combination has since been FDA approved and is now used widely for HSPC mobilisation in poor responders. Mesenchymal stem cells (MSCs), also present in the bone marrow, have been shown to exhibit therapeutic potential as stem cell therapies in a wide range of disease, including tissue injury (bone fractures and ischemic heart disease) and autoimmune diseases. Therapeutic approaches require the intravenous injection of autologous or allogenic culture- expanded MSCs that are thought to traffic to sites of tissue injury and promote tissue regeneration. An alternative approach would be to mobilize endogenous MSCs into the blood, thereby reducing costs and obviating regulatory and technical hurdles associated with development of cell therapies. In this talk I will discuss different pharmacological strategies that can be used to mobilize MSCs from the bone marrow into the blood. We initially showed that while the G-CSF/plerixafor combination was not effective, a combination of VEGF and plerixafor was able to selectively mobilise MSCs. In this talk I will discuss our latest discoveries with respect to pharmacological strategies to mobilize MSCs, the work we have done to investigate the mechanism of action of these drugs in this context and results of collaborative work with Dr Kevin Bakers group in Michigan, showing the positive effects of these drugs on bone regeneration in a spine fusion model in the rat. Taken together our data provide proof of concept that pharmacological strategies that mobilize MSCs into the blood can stimulate tissue regeneration.

Zebrafish disease models for high throughput screens in drug development .Farhad Karbassi¹, Arman Hassanpour¹, Rui Guan¹, Jinglu Ai¹, Youdong Wang¹, Loch Macdonald¹, and Xiao-Yan Wen^{1,2} ¹Zebrafish Center for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science & Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario; ² Department of Medicine, University of Toronto, Ontario, Canada

The zebrafish has emerged as a robust model organism for high throughput drug screening because of its fecundity, transparent embryos and rapid development. In contrast to traditional cell-based screening, the zebrafish provides a whole vertebrate system for drug screening. It combines the biological complexity of in vivo models with the ability of performing high-throughput screening (HTS) in microplates and quick assessment of potential drug toxicity, providing valuable data for preclinical drug development. The zebrafish is also a robust model system for studying cardiovascular development, functioning and related diseases. Within 48 hours of fertilization, the zebrafish develops a functional circulating vascular system and a beating heart. Intracerebral hemorrhage (ICH) is a severe and debilitating form of stroke that is most common due to hypertension, amyloid angiopathy, brain vascular malformations or secondary to medications including antiplatelet and anticoagulant drugs. Spontaneous ICH comprises 10% of strokes and is associated with death or disability in more than 50% of the approximately 90,000 patients affected each year in North America. Clinical studies also have disclosed a link between cholesterol-lowering 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitors (statins) and increased risk of ICH. Other than treatment of hypertension, there is no prophylactic treatment to prevent ICH. Our team has developed a unique zebrafish embryonic ICH model where brain hemorrhage is induced by statins. Using induced zebrafish ICH model in screening NIH Clinical Collections library (727 drugs), we identified a small molecule drug EZF-100 with potent anti-ICH properties. Furthermore, EZF-100 effectively rescued hemorrhage after morpholino knockdown of the pathway proteins downstream of HMGCR. Studies on cultured human endothelial cells demonstrated that EZF-100 enhanced vessel stability by de-phosphorylating the endothelial junction protein VE-Cadherin. The anti-ICH efficacy of EZF-100 was validated on mouse LPS-induced brain microbleed model. Through lead optimization, we generated EZF-100 analogs with improved drug efficacy and lower toxicity on zebrafish models. Larger animals are being employed for drug PKPD and toxicity studies for preclinical development. Our data suggests that zebrafish is a valid tool for phenotype-based high-throughput screens. EZF-100/analogs confer vascular stabilization and could potentially be developed as drugs for ICH prevention. *This study was funded by Canada Foundation for Innovation (CFI), Brain Canada Foundation and Genome Canada GAPP Research Program.

Use of 3D structure in quest for pharmacological modulators of the Na,K-ATPase activity. Natalya U. Fedosova (Aarhus University, Denmark)

Na,K-ATPase maintains an uneven distribution of Na⁺ and K⁺ ions over membrane, forming the basis for the resting membrane potential and excitability, as well as the driving force for transport of nutrients and other ions. The enzyme's minimal functional unit is an oligomeric complex $\alpha\beta$ built of 4 α - and 3 β -isoforms expressed in a tissue-specific fashion. $\alpha1$ is common in all cells while the isoforms other than $\alpha1$ are particularly important for the function of the specialized cells. The above findings prompt the idea to design isoform-specific ligands instead of the known compounds with sweeping action and significant systemic effects. Derivatization of the cardiotonic steroids (CTS) is an obvious strategy since they have nearly absolute specificity for the enzyme. In addition, CTS bind extracellularly thereby eliminating the issue of membrane permeability. We have solved crystal structures of the high affinity complexes of the $\alpha1\beta1$ Na,K-ATPase with three CTS, bufalin, ouabain and digoxin, varying in the structure of lactone ring and in the degree of glycosylation. These structures revealed similar binding modes for all three ligands, yet with some differences related to the number, size and electrostatic properties of the substituents at the CTS core. Since the isoform-related differences in amino acid sequences are found within the cavity leading to the CTSbinding site, we supplement the existing description of crystallized enzyme-CTS complexes with the data obtained under physiological conditions. Electron Paramagnetic Resonance (EPR) spectra of spin-labelled CTS with varying spacer arms report on the radius of the binding cavity at corresponding distances from the steroid core. In parallel, molecular dynamics simulations reveal possible interactions or steric clashes. We expect to identify the isoform-specific amino acid residues and suggest CTS derivatization that improves interactions with the binding sites of particular isoforms and thereby design the isoform-specific drugs targeting Na,K-ATPase in a selected tissue. Financial support from The Danish Council for Independent Research (DFF-7016-00125) and The A.P. Møller Foundation for the Advancement of Medical Science.

A Pluridimensional View of GPCR Biased Agonism: Insights from Synthetic and Endogenous Agonists Claudio M. Costa-Neto (USP-RP)

G protein-coupled receptors (GPCRs) are membrane proteins that can transduce signals from a plethora of extracellular molecules to the intracellular environment. For decades GPCRs were believed to transduce their signals by exclusively coupling to G proteins, which would subsequently activate different effectors and lead to production of respective second messengers (e.g. IP3, cAMP). However, GPCRs were later described to activate G protein-independent signaling pathways, such as β-arrestin-dependent activation of kinases, and more recently some ligands were reported to preferentially trigger some pathways, being called "biased agonists". Therefore, although for decades the functionality of GPCRs have been evaluated and interpreted linearly, such as an ON/OFF switch, it is currently clear that these receptors may be stabilized in different active states, triggering several signaling pathways depending on the interacting ligand and influenced by factors such as cellular location, time, and others. In the light of such pluridimensional view of GPCR signaling, we have broadly characterized novel synthetic as well as recently discovered endogenous agonists for different GPCRs. Our data show that modification in ligands' structure can result either in remarkable or subtle and specific changes in signaling profiles; in some cases, resulting in distinct physiological responses. This illustrates the exceptional plasticity of GPCRs as signal transduction entities, but also opens new perspectives for designing and developing ligands with altered signaling properties, which may become future drugs with therapeutic benefits and/or reduced side-effects.

History of Pharmacology: From the origins to Modern Era. François Noël (Lab. Farmacologia Bioquímica e Molecular – ICB/UFRJ)

In this lecture we will make a little trip through time and space to better understand how pharmacology was born and strengthened, and where it is going. From ancient times through Greece, the medieval and renaissance periods, we will reach the seventeenth and nineteenth centuries when great advances in physiology and chemistry have made possible the emergence of pharmacology as a new discipline. After a look on how appeared the first synthetic drugs and the birth of the German pharmaceutical industry, we will describe the modern era and point out what could be the pharmacology of the future. Finally, we will propose a brief history of pharmacology in Brazil.

Peripubertal Stress and Hippocampal Damage as Risk Factors in the Pathophysiology of Schizophrenia: Implications for Treatment & Prevention Anthony A. Grace, PhD Departments of Neuroscience, Psychiatry and Psychology University of Pittsburgh Pittsburgh, PA USA

Substantial evidence demonstrates that schizophrenia involves a dysregulated dopamine system driven by overactivity in the hippocampus. Schizophrenia brains show a substantial loss of parvalbumin GABAergic interneurons in the hippocampus which likely drives the hyperactivity, leading to an over-responsive dopamine system. Our studies suggest that when the hippocampus is hyperactive the dopamine system is hyper-responsive to stimuli, which can underlie psychosis. A

major question is why there is interneuron loss in the hippocampus. Parvalbumin interneurons early in life are susceptible to damage due to stress. In a developmental disruption model of schizophrenia, we found that prepubertally these rats are more anxious, hyper-responsive to stress, and show hyperactivity in the amygdala; furthermore relieving the stress early in life prevents the transition to "psychosis." Thus, schizophrenia susceptibility may be due to heightened sensitivity to the deleterious effects of stress. Indeed, multiple stressors given during this sensitive period to normal rats leads to the schizophrenia phenotype. Moreover, elimination of the ability of the medial prefrontal cortex to regulate stress enables minor stressors to yield the schizophrenia phenotype. In contrast, multiple stressors given to adult rats result in a depression-like phenotype. However, if the critical developmental period is first re-opened in the adult rat via histone decarboxylase inhibition, the same stressors now yield a schizophrenia phenotype. This suggests that genetic predisposition does not cause schizophrenia, but instead causes the individual to be hypersensitive to the deleterious effects of stress. Moreover, stress susceptibility may be a common link in familial risk for schizophrenia and depression. Therefore, controlling stress early in life in susceptible individuals may be an effective means to prevent transition to schizophrenia later in life. Supported by USPHS MH57440

Novel targets for therapeutic intervention in Parkinson's disease. Tiago Fleming Outeiro (University Medical Center Goettingen, Germany)

The aggregation of alpha-synuclein (ASYN) in Lewy bodies and Lewy neurites is the typical pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Furthermore, mutations in the gene encoding for ASYN are associated with familial and sporadic forms of PD, suggesting this protein plays a central role in the disease. However, the precise contribution of ASYN to neuronal dysfunction and death is still unclear. By taking advantage of studies in model organisms, we are investigating the molecular underpinnings of PD, and found that prefibrillar soluble aSyn oligomers are crucial associated with synaptic dysfunction. We identified the cellular prion protein (PrP^C) as a key mediator in aSyn-induced synaptic impairment. We found that extracellular aSyn oligomers formed a complex with PrP^C that induced the phosphorylation of Fyn kinase, triggering a series of downstream effects that culminate with synaptic dysfunction. In total, our studies provide novel insight into the molecular mechanisms associated with cognitive impairment in PD and other synucleinopathies.

The end of medicine as we know it. Ana I Casas¹, Cristian Nogales¹, Eva Geus², Friederike Langhauser², Emre Guney^{3,4}, Manuela G. López⁵, Jan Baumbach⁶, Christoph Kleinschnitz² & Harald H.H.W. Schmidt¹ 1 Department of Pharmacology and Personalised Medicine, Maastricht Center for Systems Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands 2 Department of Neurology, University Clinics Essen, Essen, Germany 3Research Programme on Biomedical Informatics, The Hospital del Mar Medical, Barcelona, Spain 4 Research Institute and Pompeu Fabra University, Barcelona, Spain 5Instituto Teofilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain 6 Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany

Existing drugs fail to provide benefit for most patients. The efficacy of drug discovery is in a constant decline. This poor translational success of biomedical research is due to false incentives, lack of quality/reproducibility and publication bias. The most important reason, however, is our current concept of disease, i.e. mostly by organ or symptom, not by mechanism. Systems Medicine will lead to a mechanism-based redefinition of disease, precision diagnosis and therapy eliminating the need for drug discovery and a complete reorganization of how we teach, train and practice medicine. Moreover, explosion of systems medicine opened a new concept of therapeutic treatment focused

on the so-called network pharmacology, where several targets modulated at the same time lead to the first effective therapy for high unmet medical need indications with no treatment so far.

Symposia and Roundtables

H2S-based anti-inflammatories: GI-safe and enhanced effectiveness. John L. Wallace, Peter Nagy, Troy Feener, Thibault Alain, Tamas Ditroi, David Vaughan, Marcelo N. Muscara, Gilberto de Nucci & Andre Buret. University of Calgary (Canada), National Institute of Oncology (Hungary), Antibe Therapeutics Inc. (Canada), University of São Paulo (Brasil) and University of Campinas (Brasil) Hydrogen sulfide (H S) is a naturally occurring mediator produced by intestinal bacteria and various eukaryotic cells, which can exert protective and analgesic effects. ATB-346 is a H S-releasing derivative of naproxen. In animals, ATB-346 produces negligible gastrointestinal (GI) damage and bleeding. In humans, ATB-346 was found to be much more potent and long-acting than naproxen. A human efficacy study demonstrated that ATB-346 (250 mg daily) was effective at significantly reducing pain in patients with osteoarthritis of the knee and inhibiting systemic cyclooxygenase (COX) activity. COX is the target enzyme of all NSAIDs. Aim: The aim of the present study was to determine if ATB-346 (250 mg once daily) would induce significantly less upper GI ulceration than standard dose sodium naproxen (550 mg twice daily). More specifically, we aimed to determine if healthy subjects taking ATB-346 (250 mg once daily) for 14 days would develop significantly less gastroduodenal ulcers (>3mm diameter with unequivocal depth) than subjects taking equieffective anti-inflammatory doses of naproxen (550 mg twice daily). Design: This was a doubleblind, active control study. 244 healthy volunteers completed the study. Upper GI endoscopy was performed prior to and on day 14 after commencing treatment with naproxen (550 mg twice daily) or ATB-346 (250 mg once daily in the morning and placebo once daily in the evening). Whole blood thromboxane synthesis (COX activity) was measured on days 0, 7 and 14. Results: For the primary endpoint, incidence of ulcers more than 3 mm in diameter, 53 subjects (42%) taking naproxen developed at least one ulcer, while only 3 subjects (2.5%) taking ATB-346 developed at least one ulcer (p=0.00001). The two drugs produced comparable suppression of systemic COX activity. Subjects in the naproxen group developed more ulcers (an average of 4/subject) than in the ATB-346 group (an average of 1.3/subject), and a greater incidence of larger (more than 5 mm diameter) ulcers (125 vs 0, respectively; see figure). The incidence of abdominal pain, gastroesophageal reflux and nausea were markedly lower with ATB-346 than with naproxen. Systemic COX activity was inhibited by 95% in both the ATB-346 and naproxen groups (no significant difference) and plasma H2S levels were significantly elevated in subjects treated with ATB-346 (by 50%; p=0.001). Conclusions: As in pre-clinical studies, this phase 2 clinical trial demonstrated a dramatic increase in the GI safety of ATB-346 versus one of the most widely used NSAIDs, naproxen. ATB-346 produced equivalent suppression of COX to naproxen, consistent with a previous Phase 2A trial that demonstrated significant pain relief in patients with osteoarthritis. ATB-346 appears to be an effective and much safer alternative to existing NSAIDs.

Biofilm control: A key for better treatments? Nathalie Vergnolle, JP Motta Digestive Health Research Institute, Toulouse, France

Biofilms grow at mucosal surfaces in organized community, resisting to pathogen invasion, but also making it more difficult for drugs to be absorbed. Hence, biofilm might also be responsible for metabolizing drugs. Drugs themselves are known to induce microbial dysbiosis. It is now clear that biofilms have to be considered in drug development either as potential helpers for drug metabolism or absorption, but also sometimes as additional barrier to be overcome. The composition, the size and the biophysical properties of biofilms are important in determining whether biofilms are beneficial or in the contrary detrimental to drug treatments. Evidences have been raised demonstrating the dysbiotic effects of certain drugs on microbiota, and biofilm organization. Here

will be discussed how drug design might take into account biofilm organization, with a particular focus on the effects of H₂S. Further, evidences of the control of biofilms at mucosal surfaces by host proteins, and in particular by epithelial proteases will be discussed. Luminal control of proteolytic activity impacts microbial biofilms at mucosal surfaces. We have demonstrated that total protease inhibition alters spatial segregation of microbiota biofilms, allowing bacteria to invade the mucus layer and to translocate across the epithelium. Epithelial proteases cleaved the biofilm matrix of reconstituted mucosa-associated human microbiota. We demonstrate a previously unknown physiological role for epithelial proteases that constrains biofilms at mucosal surfaces. This will be further discussed in the context where drugs, by altering host protein expression, might also impact biofilms. Altogether, these elements point to new potential therapies targeting or at least considering biofilms, important for a broad range of disorders in the gut and beyond.

Glucagon inhibits ovalbumin-induced lung inflammation and remodeling. Vinicius de Frias Carvalho (Fiocruz)

Glucagon is a hyperglycemic pancreatic hormone that has been shown to be beneficial as a treatment for bronchospasm in asthmatics. We investigated the role of this hormone on airway smooth muscle contraction and lung inflammation using both in vitro and in vivo approaches. Glucagon partially inhibited carbachol-induced tracheal contraction in a mechanism clearly sensitive to a glucagon receptor (GcgR) antagonist. In addition, the glucagon-mediated impairment of cholinomimetic agents-induced contraction was prevented by blocking COX (indomethacin) or COX-1 (SC-560). Glucagon induced CREB phosphorylation and increased PGE2 levels in the lung tissue without altering COX-1 expression. Glucagon inhibited AHR and eosinophilia in BAL and peribronchiolar region, subepithelial fibrosis, and T lymphocytes accumulation in BAL and lung induced by ovalbumin (OVA) challenge. The inhibitory action of glucagon occurred in parallel with reduction of OVA-induced generation of IL-4, IL-5, IL-13, TNF- α , eotaxin-1/CCL11, and eotaxin-2/CCL24 but not MDC/CCL22 and TARC/CCL17. The inhibitory effect of glucagon on OVA-induced AHR and collagen deposition was reversed by pre-treatment with indomethacin. These findings suggest that glucagon possesses airway-relaxing properties and reduces crucial features of asthma mediated by COX-1-PGE2-dependent mechanisms.

Abnormal T-cell development in the thymus of non-obese diabetic mice: Possible relationship with the pathogenesis of type 1 autoimmune diabetes. Wilson Savino (Fiocruz)

Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of beta cells in the pancreas, by direct interactions with autoreactive pancreas infiltrating T lymphocytes (PILs). Alterations in the non-obese diabetic (NOD) mouse thymus during the pathogenesis of the disease have been reported. From the initial migratory disturbances to the accumulation of mature thymocytes, including regulatory Foxp3⁺ T cells, important mechanisms seem to regulate the repertoire of T cells that leave the thymus to settle in peripheral lymphoid organs. A significant modulation of the expression of extracellular matrix and soluble chemoattractant molecules, in addition to integrins and chemokine receptors, may contribute to the progressive accumulation of mature thymocytes and consequent formation of giant perivascular spaces (PVS) that are observed in the NOD mouse thymus. The abnormal T-cell development in NOD mice is related to the intrathymic expression of different migration-related molecules, peptides belonging to the family of insulin and insulin-like growth factors as well as the participation of high levels of circulating corticosterone and their possible influence on the onset of aggressive autoimmunity during the pathogenesis of T1D.

Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation. Licio A Velloso Obesity and Comorbidities research Center State University of Campinas

The consumption of large amounts of dietary fats is one of the most important environmental factors contributing to the development of obesity and metabolic disorders. GPR120 and GPR40 are polyunsaturated fatty acid receptors that exert a number of systemic effects that are beneficial for metabolic and inflammatory diseases. Here, we evaluate the expression and potential role of hypothalamic GPR120 and GPR40 as targets for the treatment of obesity. In this talk we show that both receptors are expressed in the hypothalamus; GPR120 is primarily present in microglia, whereas GPR40 is expressed in neurons. Upon intracerebroventricular treatment, GW9508, a non-specific agonist for both receptors, reduced energy efficiency and the expression of inflammatory genes in the hypothalamus. Reducing GPR120 hypothalamic expression using a lentivirus-based approach resulted in the loss of the anti-inflammatory effect of GW9508 and increased energy efficiency. Intracerebroventricular treatment with the GPR120- and GPR40-specific agonists TUG1197 and TUG905, respectively, resulted in milder effects than those produced by GW9508.

Interaction of Biperiden on Alcohol-Seeking Behaviors. Rodrigo Molini Leão^{1,2}; Clarice Ribeiro Lira²; Paola Palombo³; Fábio Cardoso Cruz^{3,4}; José Carlos Fernandes Galduróz⁵. 1. Departamento de Biorregulação (ICS/UFBA) 2. Programa de Pós-Graduação em Farmácia (FACFAR/UFBA) 3. Programa de Pós-Graduação em Farmacologia (EPM/UNIFESP) 4. Departamento de Farmacologia (EPM/UNIFESP) 5. Departamento de Psicobiologia (EPM/UNIFESP)

Alcohol dependence and other drugs are a subject of extreme importance and intense discussion among researchers around the world. The psychotropic substances are capable of inducing dependence, and ethanol is one of the most prominent. Its harmful use is related to numerous health problems, besides the difficulty of family and social relationship, unemployment, domestic violence and death. The understanding of the mechanisms by which psychoactive substances lead to addiction is still in the beginning, and since several factors participate in these processes an approach become limited from a single focus. In general, alcohol is a depressant drug of the central nervous system. Studies have shown that alcohol interacts with various neurotransmitter systems, such as GABA, glutamate, dopamine, acetylcholine and serotonin. Alcohol, when administered acutely, activates the mesolimbic dopaminergic system and, after chronic administration, promotes important functional alterations in this reward system. The reward system has as main neurotransmitter dopamine and is responsible for positive reinforcement. In this way, the subject is urged to use the substance repeatedly, creating a specific memory for this drug-seeking behavior. In addition, acetylcholine also plays a key role in the functioning of the mesolimbic system, interacting with important regions in this reward circuit of the brain. It is well established that the modulation of cholinergic neurotransmission through nicotinic receptors alters the behavior of alcohol consumption. However, it is not yet known whether drugs that interact with muscarinic receptors, such as biperiden (muscarinic receptor antagonist type 1), would have similar effects. Thus, it is very importance to perform studies that verify the effect of biperiden in decrease the contingency of reinforcement involved in alcohol dependence, thus having a great potential for a new pharmacological treatment. Apoio Financeiro: FAP UNIFESP – 99/2016

Synaptic plasticity mechanism common to learning and alcohol disorder. *Karina Possa Abrahão, PhD* Professora Adjunta Departamento de Psicobiologia Universidade Federal de São Paulo

Alcohol use disorders include drinking problems that span a range from binge drinking to alcohol abuse and dependence. Plastic changes in synaptic efficacy, such as long-term depression (LTD) and long-term potentiation (LTP), are widely recognized as mechanisms involved in learning and memory as well as in responses to drugs of abuse. Alcohol exposure triggers cognitive deficits and executive dysfunction, which is associated with

poor decision-making towards drinking. These effects may be associated with the fact that acute and prolonged ethanol exposure produces or alters LTD and LTP. Indeed, ethanol affect striatal plasticity, but much less is known about ethanol's effect on the efferent pathways of the striatum projecting neurons: the substantia nigra pars reticulada (SNr) and the globus pallidus (GP), which are essentials for the decision-making function of the Basal Ganglia. Thus, we aim to investigate the effect of acute ethanol on the synapse strengthen of the striatum projection to the SNr and GPe. We used Ca²⁺ activity photometry (GCamp6f), ChR2 optogenetics and patch-clamp recordings to evaluate the striatonigral and striatopallidal synapses onto SNr and GPe neurons. Acute ethanol effects on the pre-synaptic bottoms of the striatopallidal pathway does not change the efficacy of pallidal neurons response. On the other hand, acute ethanol induces a transient decrease of the pre-synaptic activity of the the striatonigral pathway which is translated as a LTD effect on the post-synaptic neuron. The disbalance between the activity of the striatonigral and striatopallidal pathways may induce changes in decision-making and ethanol seeking behavior. Funding: Laboratory of Dr. David Lovinger - Division of Intramural Clinical and Biological Research of the National Institute on Alcohol Abuse and Alcoholism (NIH - ZIA AA000407, USA); 2014 IBRO John G. Nicholls Research Fellowship and; Ciências sem Fronteiras program (Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior - CAPES 2496/13-5, Brazil).

Aging and Neuroprotection: Effects of Klotho protein in energetic metabolism, Na,K-ATPase signaling and adaptative response in Central Nervous System Cristoforo Scavone Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo.

Since its accidental discovery, α -Klotho has been implicated with the aging process and aging phenotype in several organs. With a very limited expression pattern, mainly in the kidney and brain, Klotho produces its general effects through local action in the kidney, regulating phosphate serum levels, and acting as a hormone via its cleaved and/or secreted form. Neuronal-produced Klotho actions, especially, still need clarification. Studies from our laboratory reported an age-related decrease of Na+,K+-ATPase activity linked to cyclic GMP- PKG (cyclic GMP-dependent protein kinase) in cerebellum, which are signalling pathways closely related to N-Methyl-D-aspartate receptor (NMDAR) function. Many other studies support the idea of Na+,K+-ATPase and NMDARrelated alterations leading to learning, memory, affective and motor disturbances during the aging process. In addition, we have now evidence that the drastic reduction in α Klotho protein levels in *klotho* hypomorphic mice $(kl^{-/-})$, led to significant molecular changes in cerebellum, therefore, corroborating previous data on Na⁺,K⁺-ATPase and NMDAR relevance to age-related alterations and proper cerebellar function. Additional studies in primary astrocytes culture also showed that soluble Klotho, acting through astrocytic FGFR1, induces ERK phosphorylation and lactate formation and release. This aerobic glycolysis induced by Klotho treatment is achieved by hindering pyruvate metabolism through the mitochondria, forcing the energy substrate to be processed by lactate dehydrogenase (LDH). Additionally, we demonstrate not only that insulin, but also glutamate stimulation is capable of elevating Klotho levels in cultured hippocampal neurons, whereas AMPA and NMDA antagonism has a negative effect on Klotho protein content. Taken together these data show Klotho as a new candidate to participate in the metabolic cooperation between neurons and astrocytes, with Klotho being produced and released by neurons in response to glutamatergic activity in order to stimulate astrocytic lactate formation and release, which in turn can be used by neurons to meet their elevated energy needs. Funded by FAPESP, CNPq and CAPES

Chemogenetic approaches to dissect redox stress pathways in the cardiovascular system.

Thomas Michel, MD, PhD Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, USA

Reactive oxygen species (ROS) are associated with heart failure. The roles of H_2O_2 in cardiac dysfunction are unclear owing to a paucity of tools for the precise manipulation of intracellular redox state. We developed a novel chemogenetic approach to selectively express and activate a recombinant yeast H_2O_2 -generating enzyme in the heart by providing its specific D-amino acid substrate in vivo. We constructed a fusion protein between a yeast D-amino acid oxidase (DAAO) and the H₂O₂-sensitive biosensor HyPer in a cardiotropic AAV9 vector that simultaneously generates and quantitates H_2O_2 in the heart. We achieved robust recombinant DAAO expression in the hearts of rats infected with the virus. In vitro stimulation of cardiac myocytes from these animals with D-alanine induced a significant transcriptional stress response mediated by the transcription factors Nrf2 and NF-kB. In vivo activation of DAAO by adding D-alanine to the animals' drinking water rapidly resulted in severe systolic dysfunction. We developed and applied a novel chemogenetic system in which in vivo generation of H₂O₂ in the heart rapidly induces a dilated cardiomyopathy with significant systolic dysfunction. Treatment with either valsartan or sacubitril-valsartan led to the reversal of the heart failure phenotype. We anticipate that advances in chemogenetic technology will enable future studies of ROS biology both in the heart and in other organ systems and will also need to novel screening approaches for new therapeutic agents. Funding: These studies were support in part by funds from the National Heart Lung and Blood Institute of the National Institutes of Health (USA); from Novartis; and from the Brigham Biomedical Research Institute.

Vascular thiol isomerases: novel redox mechanisms and therapeutic opportunities. Francisco R. M. Laurindo Associate Professor and Director, Vascular Biology Laboratory University of São Paulo School of Medicine, São Paulo. Brazil

Protein Disulfide Isomerases (PDI) are thiol oxidoreductase chaperones from thioredoxin superfamily. As redox folding catalysts from the endoplasmic reticulum (ER), their roles in ER-related redox homeostasis and signaling are well-studied. PDIA1, the family prototype, exerts thiol oxidation/reduction and isomerization, plus chaperone effects. Substantial evidence indicates that PDIA1 regulates thiol-disulfide switches in other cell locations such as cell surface and possibly cytosol. Subcellular PDIA1 translocation routes remain unclear and seem Golgi-independent. Our work has shown that PDIA1 is required for agonist-triggered superoxide production via Nox NADPH oxidase activation and VSMC migration. This led us to hypothesize that PDIA1 is involved in vascular remodeling, a crucial mechanism of vascular caliber regulation in patho(physio)logical conditions. Neutralization of the cell-surface pool of PDIA1 promoted an anticonstrictive remodeling effect during arterial repair in vivo. Results from a novel transgenic model of PDIA1 overexpression further support the effects of PDIA1 on expansive remodeling. Moreover, PDIA1 appears to exert important effects on the noise minimization of the polarized cytoskeletal organization in response to a variety of mechanostimuli in VSMC. These data allow the proposal of a redox/biomechanical paradigm for vascular remodeling. The mechanisms of PDIA1 effects in vascular remodeling may include effects on vascular

86 51st Brazilian Congress of Pharmacology and Experimental Therapeutics

smooth muscle cell (VSMC) differentiation via redox mechanisms. Also, redox modulation of integrins were identified as a relevant PDIA1 target. Furthermore, PDIA1 modulates RhoGTPases involved in cytoskeletal regulation and a physical association between PDIA1 and the RhoGTPase regulator RhoGDIalpha was reported by us recently. Moreover, the PDI family genes display a remarkable microsyntenic arrangement with RhoGDI genes, conserved through >800 million-years of evolution. Novel results in human plasma show that distinct PDIA1 levels reveal protein signatures involved in contrasting endothelial phenotypes. PDIA1 is redox-sensitive, although probably not a mass-effect redox sensor due to kinetic constraints. Rather, the "all-in-one" organization of its peculiar redox/chaperone properties likely provide PDIs with precision and versatility in redox signaling, making them promising therapeutic targets.

Protein Disulfide Isomerase: A novel therapeutic target to regulate Nox1 signaling in atherosclerosis. Lucia Rossetti Lopes (USP-SP)

My research interest is to understand the mechanisms that contribute to the generation of reactive oxygen species by NADPH oxidases in inflammatory and vascular disease. We are currently focused on the role of the redox endoplasmic reticulum chaperone protein disulfide isomerase (PDI) on NADPH oxidase dependent signaling. We initially showed that PDI can interact and regulate Nox1 activation and migration in vascular smooth muscle cells (VSMCs). Recently, we demonstrated that in neutrophils PDI can interact with p47phox, a regulatory subunit of Nox2 NADPH oxidase in these cells, through a redox dependent association enhancing ROS generation. Molecular processes underlying ROS-induced cardiovascular functional and structural alterations involve activation of NADPH oxidase dependent signaling pathways. In this context, our group has shown that over expression of PDI increases ROS generation and Nox1 signaling in resistance arteries during hypertension and atherosclerosis, through a redox association with the Nox1 regulatory subunit p47phox. Therefore, we have identified PDI as a novel protein that contributes to oxidative stress and vascular dysfunction in vascular disease. We also have described a role for Nox2 in controlling inflammation through the regulation of thioredoxin redox state. Furthermore, our findings indicate that Thioredoxin Reductase inhibition could represent a novel therapeutic strategy in the treatment of sepsis. Recently, I am studying the redox mechanisms that control melanoma response to chemotherapy with a focus on PDI as a novel therapeutic target to overcome resistance to B-RAF inhibitors.

Ultrasonic vocalizations as a maker for affective states in animal models of mood disorders. Roberto Andreatini, Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil

Rodents emit ultrasonic vocalizations (USV) which have been considered an index of affective state of the subject. In rats, 50-kHz USV would be associated with positive affective state while 22-KHz USV would be related to negative affective state. Thus, it is proposed that an increase emission of 50-kHz may represent the increase emotional tone in animal models of mania while increase 22-kHz USV emission (or blunted 50-kHz emission) may represent the negative affective state (or anhedonia) in animal models of depression [1,2,3]. In this line, it will be presented the USV emission of rats submitted to animal models of mania and depression. At general, in animal models of mania (e.g. sleep deprivation, amphetamine/ lixdexanfetamine) there is an increase in 50-kHz USV, which is blocked by antimanic drugs (e.g. lithium) [1,2]. In animal models of depression can be a marker for resilience for helplessness behaviour. In conclusion, USV can be a very interesting readout for affective state in animal models of models of mood disorders [3]. However, it could be stressed that very few studies evaluated USV in these models. [1] Pereira, Psychopharmacology, 231: 2567,

2014. [2] Wendler ,Prog Neuropsychopharmacol Biol Psychiatry, 88: 142, 2019. [3] Simola, Neuropharmacology, S0028-3908:30845, 2018.

Characterization of ultrasonic vocalizations in different pain states and social contexts in rats. Juliana Geremias Chichorro, Pharmacology Department, Federal University of Parana.

Rats emit ultrasonic vocalizations (USVs) in the range of 22-kHz and 50-kHz to communicate the presence of negative or positive emotional states, respectively. The calling behavior may be influenced by several factors, including environmental factors. Likewise, pain behavior can be modulated according to the social context, and also can be transferred to conspecifics. Herein we investigated if acute (i.e. formalin test) and chronic (i.e. constriction of the infraorbital nerve, CION) orofacial pain conditions were related to changes in the emission of aversive and appetitive calls and how different social contexts affected the nociceptive behavior and USVs. Our results demonstrated that orofacial formalin injection in rats was able to induce aversive calls concomitantly to the nociceptive behavior. Exposure of formalin injected rats to familiar cage mates had no effect on the nociceptive behavior or calls emitted by the demonstrator, but the observer showed emotional contagion of pain. In contrast, exposure of formalin-injected rats to non-familiar cage mates or females decreased the nociceptive behavior of the demonstrator. In sharp contrast, rats subjected to CION did not emit aversive calls, but showed a significant reduction in the emission of appetitive calls. Likewise, CION rats displayed ongoing pain (assessed on the conditioned place preference paradigm, CPP) and anxiety-like behavior (assessed on the elevated plus maze). Analysis of cfos expression in CION rats revealed a significant increase in the amygdala, medial prefrontal cortex (mPFC), and nucleus accumbens (NAc), in which a significant reduction of tyrosine hydroxylase was also detected. Our data suggest that acute pain is related to emission of 22kHz calls, which may indicate aversiveness. Chronic pain is associated to spontaneous pain, reduction of 50-kHz calls emission and anxiety-like behavior, which may be related to reduction in dopamine in the Nac. Changes in the social context also modulate 50-kHz emission, and our data suggest that emotional contagion of pain depends on familiarity and analgesia may be a result of social interaction with a stranger or with a female. Financial support: Capes and CNPq.

The challenge of career changing: From basic science to drug development. Gabriela Westerlund Peixoto Neves^{1 1} Drug Development Project Analyst, Biozeus, Rio de Janeiro, Brazil Contact information:

Developing a scientific career in basic science is not an easy task. Basically, a student spends years investing in his/her education, starting from undergraduate studies until completing a doctorate. The main goal is usually the same, to become a Professor and/or a Researcher at Universities or Basic Science Research Institutes. Nevertheless, to achieve these stable and permanent positions a Ph.D. usually has to spend a few more years in post-doctorate positions, in order to achieve more research experience and be better prepared for the big career opportunity. A Ph.D. is usually an experienced professional, with sophisticated and complex technical skills, trained to quickly solve problems, with a strong self-criticism and a multi-task ability. Moreover, this professional has experience in managing projects, writing scientific texts and discussing highly complex scientific subjects. This broad range of skills allows a Ph.D. to explore professional paths outside the academic field. These abilities could be explored in different careers in the pharmaceutical and biotechnology field, in positions like: medical science liaison, drug development project analyst and manager, clinical research associate, specialist in regulatory affairs, technicians in Contract Research Organization and etc. This presentation will cover the professional paths a Ph.D. can enroll outside the academy and basic research institutions, addressing from a personal experience the challenges one may find by changing the career from basic science to the pharmaceutical industry. Overall,

this lecture will encourage students and basic scientists to think outside the box when making their career choices.

Challenges for the development of new drugs to treat tropical and neglected disease: The importance of cooperation between academia and industry. Anna Caroline Campos Aguiar Universidade de São Paulo- São Carlos. Instituto de Física.

Infectious tropical diseases and neglected tropical diseases (NTDs) mainly affect Low- and Middle-Income countries. The relationship between NTDs diseases and the low income of the poorest populations is evidenced by the fact that infectious diseases rank first among the leading causes of death and permanent disability in developing countries. The current treatments for many of these diseases are unsatisfactory and there are few or no suitable drugs, in addition, the development of new drugs is unattractive from a market perspective due to the lack of sufficient financial incentives and low return on investment. The drug development process is characterized by its relevant multidisciplinary nature, covering various specialties such as organic and medicinal chemistry, biochemistry, pharmacology, information technology, and molecular and structural biology among others. In this sense, the implementation of multilateral collaborations leads to continued efforts in drug discovery. The academy plays a key role in the understanding of the pathogen biology and biochemical pathways, in the investigation of new validated molecular drug targets, development of new Large-scale cell-based phenotypic and enzymatic screening, among other issues that may help to fill the major gaps in this field. Despite the long road that still needs to be covered, the recent progress in drug development in malaria, tuberculosis and other diseases show that with concerted efforts of governments, charities, foundations, product development partnerships, academic institutions and pharmaceutical companies, headway can be made. Financial Support: FAPESP

Public awareness of science: **How to attract a bigger audience to what we discover**. Fabrício Alano Pamplona (Mind the Graph)

The need to communicate what is discovered to a broader audience is an additional challenge to scientists like us. This demands complementary skills and is often required by the scientific journals and even more by magazines, internet websites and social media. What's the value of some wonderful discover that remain hidden from the public? Here I will discuss the role of scientists in the communication of science and raising of public awareness. Particularly, my experience as an entrepreneur at Mind the Graph, a startup company founded in 2015 that currently impacts 250.000 people over the world with a product to produce impactful scientific infographics and presentations.

Pharmacological Modulation of Pain and Inflammation in Chronic Disease

Neutrophils as a source of autoantigens in Lupus: What is happening? Marc Pouliot, Sandrine Huot, Cynthia Laflamme, Philippe A. Tessier, Martin Pelletier, Eric Boilard and Paul R. Fortin. Department of Microbiology-Infectiology, and Immunology, Faculty of Medicine, Université Laval, and ARThritis Research Center, Quebec City, Canada.

Systemic lupus erythematosus (SLE) is a life-long, autoimmune disease, affecting approximately one in every 2000 individuals, most of them women of childbearing age. There is currently no cure to SLE. It is characterized by impaired immune tolerance resulting in the generation of pathogenic immune complexes, and by an increase in abnormal neutrophils in circulation. SLE also features an overexpression of type I interferon (IFN) regulated genes, denoted as an IFN signature. Compelling evidence implicates neutrophils in the inflammatory flares associated with SLE. However, explanations at the molecular level are deficient. Goals/Research Aims. We hypothesize that lupus-relevant factors affect neutrophils and promote the release of autoantigens, thereby fueling overt inflammation. To test this hypothesis, we are addressing the two following questions: 1) What are

the conditions preferably leading to neutrophil demise and release of auto-immunogenic materials? We stimulate human neutrophils from healthy volunteers with agonists relevant both to neutrophils and monitor their viability. In parallel, we measure adhesion molecules, gene expression, secretion of cytokines, adhesion to endothelial cells, and the release of damageassociated molecular patterns (DAMPs). 2) What are the factors at play in the serum of patients with lupus that can de-regulate neutrophil viability and promote the release of immunogenic materials? We incubate neutrophils from healthy volunteers with sera obtained from patients with lupus and measure the onset of neutrophil apoptosis, necrosis, the release of cytokines and DAMPs. We will select the sera that are amongst the most active in those regards and we will consider molecular pathways suspected of causing these pro-inflammatory phenotypes in order to identify potential therapeutic targets. Expected outcomes. This project shall identify conditions that alter neutrophil functions and promote the release of pro-inflammatory materials. The integration of data emerging from experiments containing purified agonists combined to manipulations with blood samples obtained from patients with lupus gives us a unique opportunity to improve our understanding of the implication of neutrophils in lupus, thus bringing us closer to better treatments. Funded in part by the Canadian Institutes of Health Research (CIHR).

Peripheral macrophage activation drives pathological pain. Thiago M. Cunha Associate Professor of Pharmacology Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeiro Preto Medical School University of Sao Paulo

Chronic pain is an important social and health problem and pharmacological treatments are not effective. Among the subtypes of chronic pain, neuropathic pain is one of the most prevalent. Regarding the pathophysiological mechanisms involved in the development of neuropathic pain, it is becoming clear that central neuroimmune-glial interactions play a critical role. Besides, peripheral neuro-immune mechanisms seems to be also very important. In this context, this talk will focus on the importance of sensory ganglia resident macrophages (NAMs) for the development of neuropathic pain. Two main aspects will be covered. First, it will be revealed whether peripheral macrophages are able to infiltrate sensory ganglia after peripheral nerve injury. Second, possible mechanisms involved in the activation of NAMs after peripheral nerve injury, and their contribution for the development of neuropathic pain will be presented. These mechanisms could favor the discovery of novel pharmacological targets that could be used in the development of novel drugs for neuropathic pain prevention/treatment.

Symposium: Vascular Dysfunction: From Vascular Injury to Remodeling

Mechanistic Insights into Caveolin-1 Depletion-dependent Endothelial-to-Mesenchymal Transition. Richard D. Minshall, PhD^{1,2} - Departments of Anesthesiology¹ and Pharmacology², University of Illinois at Chicago, USA.

Caveolin-1 (Cav-1) expression in endothelial cells (ECs) is critical for maintenance of vascular homeostasis including regulation of vascular tone, adhesivity, permeability and angiogenesis. Cav-1 regulates the expression and function of several key proteins in ECs including endothelial nitric oxide synthase (eNOS) and nitric oxide plays a critical role in regulating vascular homeostasis. Depletion of Cav-1 in ECs leads to eNOS hyperactivation, uncoupling, and formation of peroxynitrite which we hypothesized promotes endothelial-to-mesenchymal transition (EndoMT). Primary murine lung ECs (MLECs) isolated from $Cav1^{-f}$;*Flk1*^{-/+GFP} mice exhibited a mesenchymal or muscle-like phenotype with reduced potential to form endothelial tubes in Matrigel as compared to WT;*Flk1*^{-/+GFP} MLECs. In absence of Cav-1, ECs co-expressing endothelial cell (Flk1, PECAM-1, VE-cadherin) and mesenchymal markers (smooth muscle alpha actin, vimentin) may contribute to pulmonary vascular remodeling. Interestingly, we observed that the defect in tube formation in $Cav1^{-f-}$: ECs was abolished when eNOS was also genetically removed (i.e. in $Cav1^{-f-}$; eNOS^{-f-} MLECs)

suggesting eNOS-derived oxidants in absence of Cav-1 may contribute to unproductive EC tube formation. In support of these findings, elevated levels of peroxynitrite were observed in *Cav1*-/-MLECs in association with reduction in junctional PECAM and VE-cadherin staining, Notch-1 cleavage and accumulation of the intracellular domain in the nucleus, and expression of Notch-1 effector *Hey1* when compared to WT or *Cav1*-/-;*eNOS*-/- MLECs. Moreover, reduced expression of Notch-1 and -4 mRNA and increased expression of Notch-2 and -3 were observed in *Cav1*-/- but not *Cav1*-/-;*eNOS*-/- MLECs. Finally, direct treatment of *Cav1*-/-;*eNOS*-/- MLECs with peroxynitrite donor SIN-1 reconstituted the Notch-1 cleavage defect. Thus, eNOS-derived peroxynitrite in absence of Cav-1 may promote pathological angiogenesis by inhibiting Notch 1 and 4 and upregulating Notch 2 and 3 expression associated with disorganized and unproductive EC outgrowths with a mesenchymal phenotype. Funding: NIH HL60678, HL71626, and HL125356, and DOD W911NF1510410.

Perivascular adipose tissue and vascular dysfunction in sepsis. Jamil Assreuy, Clarissa Germano Barp and Patricia Oliveira Benedet Department of Pharmacology, Universidade Federal de Santa Catarina-UFSC- Florianópolis (SC), Brazil.

Recent evidence shows that perivascular adipose tissue (PVAT) participates in the physiological regulation of vascular contraction/dilation via the release of vasoactive mediators such as nitric oxide (NO) and adipokines such as leptin and adiponectin. In conditions affecting the cardiovascular system such as hypertension and obesity, there are changes in the mediators released by PVAT contributing to the ensuing vascular dysfunction. Sepsis is a complex pathological condition in which vascular dysfunction, characterized by hypotension e hyporesponsiveness to vasoconstrictors plays a fundamental role. PVAT putative role in this scenario is unknown. Therefore, the present work was designed to evaluate how PVAT contributes to the altered contraction of two vessels, namely the aorta and the superior mesenteric artery from the rat. Wistar female rats (200-250 g) were anesthetized and septic shock was induced by cecal ligation and puncture (CLP). Twenty-four hours after sepsis induction, aorta and superior mesenteric arteries with or without PVAT were cut in rings and mounted in tissue organ baths. For the molecular analysis, vessels were collected 12 h and 24 h after sepsis induction and then frozen in Tissue-Tek[®] medium, cut in slices of 10 µm and the production of ROS and NO was assessed by the fluorescent probes DCF-DA and DAF FM-DA, respectively. S-nitrosothiol content was measured by a modification of the Biotin Switch assay. The anti-contractile effect of PVAT was greater in vessels of septic animals (logEC₅₀ -6.3 \pm 0.2 PVAT– and -5.5 \pm 0.2 PVAT+ for aorta, and -5.5 \pm 0.1 in PVAT– and -4.8 ± 0.2 PVAT+ for superior mesenteric artery). The maximal response value to noradrenaline was reduced in sepsis 0.70 \pm 0.03 PVAT- and 0.54 \pm 0.03 PVAT+ aorta; 0.43 \pm 0.01 PVAT- and 0.35 ± 0.03 PVAT+ for mesenteric artery. Septic animals showed increases in NO, ROS and S-nitrosylated proteins in PVAT. Therefore, the presence of PVAT reduces the contractile effects of norepinephrine in aorta from normal rats. Sepsis induction increased further the anti-contractile effect of PVAT and it may be mediated by the increased production of NO, ROS and protein Snitrosylation. Therefore, PVAT should be considered as a new and relevant player in sepsis vascular dvsfunction. Financial support: CNPq, CAPES and FINEP. Research approved by the Institutional Animal Ethics Committee: CEUA/UFSC PP2264190617.

Endothelial Cell - Macrophage Crosstalk in Vascular Repair and Remodeling. Suellen D.S. Oliveira, PhD, Dep. of Anesthesiology, University of Illinois at Chicago, Chicago - IL, USA.

Endothelial cell (EC) activation and damage is the first step of several inflammatory vascular diseases including pulmonary arterial hypertension (PAH). PAH is characterized by pulmonary vasoconstriction and remodeling, increased right ventricular systolic pressure, right ventricular hypertrophy, and premature death. While our understanding of the pathogenesis of PAH have

significantly advanced in recent years, in about 40% of PAH patients the cause remains idiopathic (IPAH). Microvascular muscularization and development of plexiform vascular lesions, hallmark of IPAH, is also observed in Schistosomiasis-associated PAH indicating their formation in both groups may share similar mechanistic features. In this sense, research efforts from our group indicate that persistent exposure of ECs to inflammatory mediators induce a dysfunctional EC phenotypic switch leading to remodeling of the microvasculature. The molecular events that promote phenotypic and morphologic alterations in ECs remain incompletely understood, although expression of Caveolin-1 (Cav-1), a critical determinant of EC homeostasis, is reduced as a result of the lung inflammatory response and thus appears to be a key determinant of inflammatory vasculopathies, such as PAH. In absence of EC-Cav-1, the primary regulator of eNOS expression and activity, we observed increased levels of ONOO⁻ at the expense of NO bioavailability resulting in loss of BMPRII expression and disruption of the cell-cell signaling required for maintenance of the EC quiescence and vascular homeostasis. Our data also indicates EC damage leads to appearance of Cav-1+ microvesicles and small apoptotic bodies in the circulation simultaneous to depletion of lung Cav-1. Finally, we have observed that this damage-associated vesicular endothelial signals, i.e. Cav-1-containing vesicles, can activate macrophages-induced TGF- β secretion, which in turn may stimulate EC transdifferentiation into a proliferative phenotype, highly observed in the obliterative inflammatory vascular lesions of PAH patients. Sources of funding: Postdoctoral Fellowship from CNPg/CsF & an Award from the American Heart Association and the Circle of Service Foundation (18POST34020037).

Neurometabolism, Inflammation and Brain Damage

Mitochondria dynamics and metabolism regulation. Sabrina Diano^{1,2,3,4} ¹Program of Integrative Cell Signaling and Neurobiology of Metabolism, ²Departments of Cellular & Molecular Physiology, ³of Neuroscience and ⁴of Comparative Medicine, Yale University School of Medicine and Graduate School, New Haven, Connecticut, 06520 USA.

Our research has been focusing on deciphering intracellular mechanisms that enable hypothalamic cells to sense and respond to changes in circulating nutrient and hormone levels in the control of food intake, energy and glucose metabolism. Our findings have unmasked mitochondrial dynamics as critical player in the central regulation of metabolism. By altering their size, shape and function, mitochondria enable cells to adjust their activity, which in turn alters behavior and peripheral tissue functions to fine tune systemic metabolism. This presentation will highlight these cellular biological processes in the hypothalamic regulation of energy and glucose homeostasis. This work was supported by NIH R01s DK097566, DK105571, DK107293, DK120321

Diet, Mitochondria and Energy Metabolism. Alicia J. Kowaltowski Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo

Similarly to humans, in which obesity is related to a variety of age-related diseases, the lifespan of laboratory rodents is limited by obesity, including that promoted by *ad libitum* access to standard chow. Indeed, daily limitation of caloric intake (calorie restriction) has been widely shown to enhance lifespans and prevent age-related diseases in rodents. We will discuss the metabolic differences between caloric restriction and other dietary interventions that promote weight loss, such as intermittent fasting. We will also show how mitochondrial form, function and ion transport are altered in caloric restriction, and how changes in energy metabolism promoted by this dietary intervention prevent age-related diseases and modifications in the brain, liver, skin and 2 cells. Overall, our results show that caloric intake, mitochondrial form and function are intimately interconnected, and present central regulatory roles in age-related diseases.

Mitochondrial dysfunction and changes in high-energy compounds in different cellular models of hypoxia: implication to Schizophrenia. Tatiana Rosado Rosenstock. Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brasil

Schizophrenia (SZ) is a multifactorial mental disorder, which has been associated with a number of environmental factors, such as hypoxia. Considering that numerous neural mechanisms depends on energetic supply (ATP synthesis), the maintenance of mitochondrial metabolism is essential to keep cellular balance and survival. Therefore, in the present work, we evaluated functional parameters related to mitochondrial function, namely calcium levels, mitochondrial membrane potential, redox homeostasis, high-energy compounds levels and oxygen consumption, in astrocytes from control (Wistar) and Spontaneously Hypertensive Rats (SHR) animals exposed both to chemical and gaseous hypoxia. We show that astrocytes after hypoxia presented depolarized mitochondria, disturbances in Ca^{2+} handling, destabilization in redox system and alterations in ATP, ADP, Pyruvate and Lactate levels, in addition to modification in NAD⁺/NADH ratio, and Nfe2l2 and Nrf1 expression. Interestingly, intrauterine hypoxia also induced augmentation in mitochondrial biogenesis and content. Altogether, our data suggest that hypoxia can induce mitochondrial deregulation and a decrease in energy metabolism in the most prevalent cell type in the brain, astrocytes. Since SHR are also considered an animal model of SZ, our results can likewise be related to their phenotypic alterations and, therefore, our work also allow an increase in the knowledge of this burdensome disorder. Funding: FAPESP (2015/02041-1), CAPES and FAP Santa Casa 2016/2018.

Inflammatory signaling effects on neural progenitors proliferation and metabolismo. Isaias Glezer (Unifesp-EPM)

Inflammatory signaling effects on neural progenitor cells proliferation and metabolism Isaias Glezer Escola Paulista de Medicina/UNIFESP Immune cells activation and neuronal injury impact adult neurogenesis, resulting in different outcomes for regenerative responses. Adult neural progenitor cells (NPCs) display varied capacities to proliferate and differentiate into either neuronal or macroglial cells depending on the neurogenic niche. We and others have previously shown that corticosteroid-based anti-inflammatory strategies may impact NPCs through mechanisms that do not necessarily involve the innate immune system cell activity or derived molecules. In contrast, models that directly interfere with components of pro-inflammatory pathways provide direct inference of how the innate immune signaling impacts on neurogenesis. Brain injury in the hypothalamus provoke early proliferative responses in NPCs and prime these cells to acquire persistent changes, including metabolic plasticity, even when removed from their microenviroment. We also verified that global or cell-specific deletion of a key pro-inflammatory transducer results in different outcomes that may impact cellular responses to brain injury or inflammation. These data contribute to understand mechanisms of regenerative responses in the nervous system. Apoio Financeiro: FAPESP, CEPID-Redoxoma e CNPq

Symposium: Pharmacology of Natural Products: Challenges and Opportunities

Experimental and Neuropsychopharmacological Characterization of Natural Products with Epileptogenic, Anti-epileptogenic and Neuroprotective Actions Olagide W. Castro Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil.

The hippocampus is one of the most susceptible regions in the brain to be distraught with status epilepticus (SE) induced injury. SE can occur from multiple causes and is more frequent in children and the elderly population. Administration of a combination of antiepileptic drugs can abolish acute seizures in most instances of SE but cannot prevent the morbidity typically seen in survivors of SE such as cognitive and memory impairments and spontaneous recurrent seizures. This is primarily due to the inefficiency of antiepileptic drugs to modify the evolution of SE induced initial

precipitating injury into a series of epileptogenic changes followed by a state of chronic epilepsy typified by spontaneous recurrent seizures, and cognitive and memory impairments, associated with chronic inflammation, significantly waned neurogenesis and abnormal synaptic reorganization. Thus, alternative approaches that are efficient not only for curtailing SE-induced initial brain injury, neuroinflammation, aberrant neurogenesis, and abnormal synaptic reorganization but also for thwarting or restraining the progression of SE into a chronic epileptic state are needed. Here we confer the promise of two emerging therapies for preventing or easing SE-induced neurodegeneration, neuroinflammation, cognitive and memory impairments. Specifically, therapeutic efficacy of natural products *Resveratrol* and *Cannabidiol*, as well as the neurotoxicity and epileptogenic effect of the Star Fruit is discussed.

Integrative metabolomics analysis of the Brazilian Biodiversity. Norberto Peporine Lopes. *NPPNS-FCFRP, USP*.

Plants and other living organisms have long been used as source for different useful human products. Traditional medicines have always been a source for the cure of many diseases since antiquity. However, their rational use was possible only after the understanding of how the compounds present in plants had their activities proved. Then the search for new bioactive compounds had a huge development and as consequence, a number of new molecules with different spectra of activities were found. Numerous examples of bioactive natural products are known; however their discoveries have always been associated with the development of new analytical techniques. Recently metabolomics strategies based on mass spectrometry improved dereplication process and also open new perspectives for chemical biology investigations. In this talk we provide an integrative overview of MS strategies helping integrative metabolomics analysis and imaging generation for the Brazilian Biodiversity.

Symposium: New Pharmacological Approaches for Fibrosing Disorders

Influence of activation of the inflammasome pathway on tissue remodeling and fibrogenic activities. Vincent Lagente NUMECAN Institute, INSERM, INRA, University of Rennes, France Fibrosis is a basic connective tissue lesion defined by the increase in the fibrillar extracellular matrix (ECM) components in tissue or organ. Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate the turn-over of ECM and so they are suggested to be important in tissue remodeling observed during fibrogenic process associated with chronic inflammation. Tissue remodeling is the result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components markedly controlled by the MMPs/TIMP imbalance. We previously showed an association of the differences in collagen deposition in the lungs of bleomycin-treated mice with a reduced molar pro-MMP-9/TIMP-1 ratio with increased expression and release of tissue inhibitors of metalloproteinase (TIMP)-1 both at 24 h and 3 weeks later. This suggests an early altered regulation of matrix turnover involved in the development of fibrosis. We also demonstrated an activation of NLRP3-inflammasome pathway associated with the IL-1R/MyD88 signaling in the development of experimental fibrosis both in lung and liver. This was also associated with the MMPs/TIMP imbalance. To further analyse the cell-cell interaction on the development of fibrosis, we co-cultured human macrophages (THP-1 cell line or human monocytederived macrophages (MDMs)) with human myofibroblasts (LX-2 cell line or primary myofibroblasts). The results showed that the activation of inflammasome pathway in macrophages leads to a pro-inflammatory environment for myofibroblasts with enhanced reactivity. Finally, these observations emphasize those effective therapies for these disorders must be given early in the natural history of the disease, prior to the development of tissue remodeling and fibrosis. Financial support: INSERM and Fondation de la Recherche Médicale (FRM, France)

The Pharmacological Role of Neuropeptides in Inflammation, Pain and Beyond

New insights into the role of TRP receptors in arthritis. Alawi KM, de Sousa Valente J and Brain SD. King's College London SE1 9NH,

Transient Receptor Potential Canonical 5 (TRPC5) is a non-selective ion channel. We are investigating the role of TRPC5 in murine models of arthritis. The expression of TRPC5 was reduced in the synovium (p<0.01) in murine CFA-induced arthritis over 14 days. This was accompanied by a hyperalgesic and pro-inflammatory profile in the TRPC5 knockout (KO) compared to wildtype (WT) mice with enhanced primary (weight-bearing) and secondary (mechanical) hyperalgesia. The proinflammatory profile was associated with increased levels of swelling and bio-markers including TNF α and matrix metalloproteases. The results were supported by use of the selective TRPC4/5 antagonist ML204. Analysis of human joint tissue with defined arthritis revealed that TRPC5 expression was reduced in OA as well as RA (Alawi et al. 2017). We hypothesised that TRPC5 may be involved in osteo-arthritis (OA). To examine this, the partial meniscectomy (PMNX) model of OA and the monoiodoacetate (MIA) models were investigated. PMNX mice demonstrated enhanced hyperalgesia during the chronic phase (days 42-56; n=7; p<0.05). Walking patterns provided evidence of differences between the TRPC5 KO compared with WT PMNX mice (n=7; p<0.05 from 42-77 days). This provides the first in vivo evidence of the contribution of TRPC5 to arthritic conditions. These results provide novel evidence of a mechanism by which loss or blockade of TRPC5 leads to increased suffering associated with RA and OA. Alawi, K.M., et al. Ann Rheum Dis, 2017 76:252-260. Supported by Versus Arthritis UK

Somatostatin sst₄ receptor agonists, as novel analgesic and antidepressant drug candidates. <u>Zsuzsanna Helyes</u>, Eva Szoke, Boglarka Kantas, Eva Borbely, Agnes Hunyady, Junaid Ashgar, Valeria Tekus, Csaba Hetenyi, Rita Borzsei, Peter Banhegyi, János Szolcsányi, Erika Pintér. Department of Pharmacology and Pharmacotherapy of Pécs, Medical School & János Szentágothai Research Centre, University of Pécs, Hungary

Background: Somatostatin released from the capsaicin-sensitive peptidergic nociceptors at the periphery and GABAergic interneurons in the brain inhibits pain, anxiety and depression. Its sst4 receptor is not involved in the endocrine actions, but it has potent analgesic and anti-depressant functions proposing drug developmental perspectives. Since it is expressed on glutamatergic and cholinergic neurons of pain and mood-related brain regions, we investigated the effects of our novel small molecule sst₄ receptor agonists in mouse models of neuropathic pain and depressionlike behavior. Methods: Sst₄ receptor binding of our pirrolo-pirimidine compounds was determined in silico, activation by the gamma-GTP-binding, cAMP inhibition and beta-arrestin activation assays on sst₄-expressing CHO cells. The effects of the 4 most potent and efficacious agonists were tested on mechanical hyperalgesia in the partial sciatic nerve ligation-induced traumatic mononeuropathy model, spontaneous locomotor activity and anxiety in the open field and elevated plus maze tests, depression-like behaviour in the tail suspension test. Results: Our novel compounds bind to the high affinity binding site of the receptor, activate the G-protein binding and inhibit cAMP formation. However, despite the reference sst_4 agonists, they do not induce beta-arrestin activation responsible for tolerance upon chronic use. They exert 65-80% maximal anti-hyperalgesic effects in the neuropathy model after a single oral administration of 100-500 microg/kg doses, as well as significantly inhibit anxiety and depression-like behavior without influencing spontaneous locomotion. Conclusion: Our sst₄ agonists are promising drug candidates for neuropathic pain, anxiety and depression that are mediated by common mechanisms and frequently occur as comorbidities. Financial support: National Brain Research Program (2017-1.2.1-NKP-2017-00002); GINOP-2.3.2-15-2016-00050 "PEPSYS"; EFOP-3.6.1-16-2016-00004

Participation of TRPA1 in neuropathic pain mechanisms. Gabriela Trevisan dos Santos (UFSM)

The external or internal stimuli that constantly bombard organisms are detected by complex physiological sensory systems. Among ion channels, transient receptor potential (TRP) channels have been identified as sensors for physiological or noxious stimuli. The TRP ankyrin 1 (TRPA1) exhibits sensitivity to thermal stimuli and chemical substances and has been suggested as a potential drug target. Thus, studying the mechanisms of TRPA1 expression, regulation, and activation is essential for understanding its role in sensory neurons. TRPA1 participation have been investigated particularly during the inflammatory process, where it contributes to pain hypersensitivity and usually undergoes an increase in expression and persistent stimulation by endogenous agonists. Thus, various studies demonstrated the involvement of TRPA1 and TRPV1 in neuropathic pain induced chronic hypersensitivity. In this view, we will report the recent advances, challenges, and unresolved issues regarding TRPA1 studies and discuss the possible discovery of new therapies that could target the TRPA1 channel. The focus of our symposium will be in TRPA1 role in neuropathic pain induced by multiple sclerosis. Apoio Financeiro: CNPq, Capes, e Prêmio Loreal para Mulheres na Ciência

Regulatory role of TRPA1 in the pathomechanism of experimental and human psoriasis. Ágnes Kemény^{1,2}, Xenia Kodji³, Szabina Horváth⁴, Rita Komlódi¹, Éva Szőke¹, Zoltán Sándor¹, Anikó Perkecz¹, György Sétáló², Susan D Brain³, Erika Pintér¹, Rolland Gyulai⁴ (1) Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Szigeti str. 12, Hungary (2) Department of Medical Biology, University of Pécs Medical School, H-7624 Pécs, Szigeti str. 12, Hungary (3) Vascular Biology & Inflammation Section, BHF Centre of Cardiovascular Excellence, King's College London, London SE1 9NH, UK (4) Department of Dermatology, Venereology and Oncodermatology, University of Pécs, H-7632 Pécs, Akác str. 1, Hungary Introduction: Psoriasis is a chronic, recurrent immune-mediated inflammatory skin disease, affecting 2-3% of the population. The critical roles for immune cells and cytokines in psoriasis pathogenesis is supported by the observation that treatments targeting the immune system, such as antibodies against TNF- α , IL-12/23 or IL-17, are highly effective in improving the disease. Imiquimod (IMQ)-induced psoriasiform skin inflammation in mice is the most frequently used animal model to study the pathomechanism. Methods: The present study revealed the modulatory role of Transient Receptor Potential Ankyrin 1 (TRPA1) and Vanilloid 1 (TRPV1) cation channels in Aldara-induced (5% imiquimod, IMQ) murine psoriasis model using selective antagonists and gene deleted genetically altered animals. We have also developed a refined localized model to enable internal controls and reduce systemic effects. Skin pathology was quantified by measuring skin thickness, scaling, blood flow, and analyzing dermal cellular infiltrate, while nocifensive behaviors were also observed. Cytokine gene expression profiles were measured ex vivo. Results: Psoriasiform dermatitis was significantly enhanced in TRPA1 KO mice and with TRPA1 antagonist (A967079) treatment. By comparison, symptoms were decreased when TRPV1 function was inhibited. IMQ induced Ca2+ influx in TRPA1-, but not in TRPV1-expressing cell lines. Compared to the TRPV1 KO animals, additional elimination of the TRPA1 channels in the TRPV1/TRPA1 double KO mice did not modify the outcome of the IMQ-induced reaction, further supporting the dominant role of TRPV1 in the process. Conclusion: Our results suggest that the protective effects in psoriasiform dermatitis can be mediated by the activation of neuronal and non-neuronal TRPA1 receptors. Further studies are required, however, to fully characterize and exploit the pro- and antiinflammatory potential of the TRPA1 receptor in cutaneous inflammatory reactions. Acknowledgement: Research grant GINOP-2.3.2-15-2016-00050 "PEPSYS"

Roundtable: Main Challenges for Innovation in Pharmacology

Challenges for the development of cannabinoid products in Brazil Fabrício Alano Pamplona (Mind the Graph)

The talk will address the opportunities and challenges in the development of cannabinoid products in Brazil. On the one hand, our country represents one of the biggest potential markets in the world, but even tough Medical Cannabis is a reality since March 2016, it is still to a great extent, an unregulated market. My experience as scientist in the field turned out to be useful in pharmaceutical product development. I will share my perspective on what's happening in Latin America, and how Brazil compares to other environments for drug development, particularly for this kind of products. The regulatory landscape is changing fast and what is now a forbidden plant that produces controlled substances, may soon become a medicinal plant from where one may produce even OTC products and food supplements, according to WHO. The complexity is even bigger, as different plant strains and different production methods may yield different extract compositions. This implies in different clinical indication. In this environment of poor regulation and much social pressure, what are the opportunities and challenges for an entrepreneur?

Rethinking Preclinical Drug Research – Human Based 3D Tumor Models as an Example. Monika Schaefer-Korting and Christian Zoschke. Freie Universität Berlin, Pharmacology and Toxicology, Königin-Luise-Str. Berlin, Germany

Animals are still considered essential for testing the efficacy and safety in preclinical drug development. Yet, most of the drug candidates fail in phase II clinical trials although they proved effective in preclinical studies (Smietana et al., 2016). This shortcoming emphasizes the need for reliable and relevant disease models prior to the in vivo testing in patients. Herein, we develop and characterize human based models of skin and mucosa carcinomas to understand better the pharmacology of drug candidates. For start, we analyzed the effects of fibroblast age and origin as well as the glycation of the extracellular matrix on the epithelial differentiation in the reconstructed tissue (Hausmann et al., 2019, Rigon et al., 2018). Since both strongly altered the construct's morphology, aging must be taken into account also for the carcinoma models. Next, we qualified the carcinoma models by testing clinically used anticancer drugs, the effects induced were correlated to the outcome in patients. Moreover, we unraveled the efficacy and safety of investigational new drugs. Finally, we are studying the pharmacokinetic profiles in the ex vivo drug application to mimic better the drug treatment regimen in patients. These data will lay the foundation for a combined ex vivo - in silico approach, which allows to extrapolate from ex vivo (model) to in vivo (patient) dosing. In conclusion, human cell-based models with tissue like architecture have been proving highly useful for pharmacological studies. Nevertheless, the culture methods strongly influence the results in drug efficacy and safety. Thus, model qualification and relation of ex vivo with in vivo data presents the major challenge to be met prior to routine use of those models. In addition, these models allow the co-culture with more cell types to answer most complex pharmacological questions, if needed. References: Smietana K, et al. Nat Rev Drug Discov. 15: 379 (2016) Balansin Rigon R et al., Int J Mol Sci: 19 (2018) Hausmann C et al., Sci Rep 9: 2913 (2019). Funding The project is embedded in the research platform BB3R receiving financial support of the Federal Ministry of Education and Research (Germany).

EU-OPENSCREEN - An International Research Infrastructure initiative to facilitate Chemical Biology and early Drug Discovery. Bahne Stechmann (EU-OPENSCREEN, Germany)

Modern life science research often requires an interdisciplinary approach as well as access to stateof-the-art technologies, expertise and resources. In Europe, an increasing number of academic technology platforms and research groups at universities and institutes established research infrastructures in chemical biology and other scientific fields to facilitate the collaboration between international researchers. Research projects in chemical biology aiming at the discovery of novel small molecular probes, which can be used as versatile tools in cell biology, are complex and often require access to screening platforms, large compound collections and chemical hit-to-lead optimization expertise, which are not always available to academic researchers. EU-OPENSCREEN (www.eu-openscreen.eu) is an academic, publicly funded, not-for-profit initiative, which supports international scientists who developed assays amendable to high-throughput screening to implement their research projects in early drug discovery to collaboratively develop novel small molecular probes for their proteins-of-interest, by providing access to high-throughput screening platforms, compound collections and medicinal chemistry groups, EU-OPENSCREEN is establishing an open-access bioactivity database which will be accessible on a global basis. Chemists and pharmacologists can provide compounds to be incorporated in the EU-OPENSCREEN compound collection, which is screened against a wide range of biological assays, thereby delivering extensive information about the biological activities of these compounds. Having compounds screened as part of this collection opens the perspective that some of these compounds will be identified as hits. In that case, the chemist will be asked to be involved in the following research projects and novel collaborations with the assay providers. Furthermore, EU-OPENSCREEN profiles these compounds in a set of standard assays to annotate them for basic physico-chemical and biological properties (e.g. cytotoxicity, antibiotic activity). Thus, chemists will rapidly receive data on the biological activities of their compounds. EU-OPENSCREEN receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823893, 824063, 654248, 823798.

Sociedade Brasileira de Farmacologia e Terapêutica Experimental (SBFTE) Executive Secretary http://www.sbfte.org.br sbfte@sbfte.org.br

Authors Index

01.013, 06.020	Almeida ITD	09.079
10.010		
10.012	Almeida JRGS	09.059
12.004, 12.013	Almeida Junior JS	05.023
09.083	Almeida LFD	09.014
08.030	Almeida LS	05.025
05.009	Almeida PRC	04.021, 10.021
04.022	Almeida RG	04.028, 04.058,
10.005		09.039
10.024	Almeida SM	04.010, 09.035,
05.008		09.055, 10.013,
01.016		10.020
05.010	Almeida SMV	10.027
10.005	Almeida TSD	02.030
02.010	Almendra JSL	08.017
	Alves AA	04.025, 04.055
	Alves AKS	09.047
	Alves APN	04.015
	Alves BO	02.016,04.026,
		09.072, 12.016
	Alves BWF	05.019
	Alves CQ	05.025
	Alves DS	04.051
	Alves EAS	09.042
	Alves FHF	02.029
	Alves Filho FC	06.038, 08.008,
		08.017
	Alves Filho JCF	04.033, 04.014,
		04.044, 05.020,
		06.020
	Alves GM	01.006
	Alves JD	04.006
	Alves Júnior EBA	08.002, 08.016,
		08.020, 08.033
	Alves JV	06.017, 06.050
,		04.050
		14.003
		01.001
		06.009, 06.032,
		09.031, 09.073
	Alves RMFR	06.022; 06.044
		06.014; 06.054;
	AIVES SIVIE	06.055
	Alves VF	04.037, 04.038
		06.021
03.023		04.057
	08.030 05.009 04.022 10.005 10.024 05.008 01.016 05.010 10.005 02.010 05.018 07.002 06.041 12.016 06.009 03.005 14.011, 14.016, 14.017 10.010 06.015, 08.007, 12.006 04.050 09.023 09.022 03.017 11.003 09.022 03.017 11.003 09.035, 10.002, 10.013 04.025, 04.055 08.024, 08.028 05.019, 08.035 09.043 07.018 02.016 07.021 10.022 09.037 04.008 09.062 03.023	08.030 Almeida LS 05.009 Almeida PRC 04.022 Almeida RG 10.005 Almeida SM 05.008 Imeida SMV 01.016 Imeida SMV 05.008 Almeida SMV 01.016 Imeida SMV 05.010 Almeida TSD 02.010 Almendra JSL 05.018 Alves AA 07.002 Alves AKS 06.041 Alves AV 12.016 Alves BO 06.009 Imeida SM 03.005 Alves BWF 14.017 Alves DS 10.010 Alves EAS 06.015, 08.007, Alves FHF 12.006 Alves Filho JCF 09.023 Alves Filho JCF 09.022 Imeida SM 03.017 Imeida SM 11.003 Alves JM 04.025, 04.055 Imeida SM 08.024, 08.028 Alves JV 05.019, 08.035 Alves SM 09.043 Alves SMI 07.018 Alves SMI 07.021 Imeida SM

100 51st Brazilian Congress of Pharmacology and Experimental Therapeutics

Amaral GA	06.029	Araujo AAS	12.009
Amaral RG	06.051, 10.002,	Araújo AB	02.030
Amaranno	10.011, 10.013,	Araújo AJ	09.019, 09.069,
	10.020, 10.026	Aldujo Aj	10.004, 10.009,
Amarante CB	01.017		10.014, 10.017,
Amorim FG	06.015; 12.006		10.025, 12.007, 4.008
Amorim VR	10.022	Araujo AKS	08.003, 08.018,
Anaissi AKM	01.006	Aldujo AKS	11.017, 08.034
Andrade AD	07.007	Araujo AL	11.005
Andrade AD Andrade ADA	07.016	Araujo AO	09.074
Andrade ADA	09.080	Araujo AO Araujo AR	08.024, 10.014,
Andrade BDS	02.001	Aldujo Alt	12.007, 09.011,
Andrade JJ	07.007; 07.016		09.019, 09.054
Andrade LN	10.002, 10.011,	Araújo AV	06.014, 06.054,
Anuldue Liv	10.026	Aldujo AV	06.055
Andrade PGF	10.020	Araujo BP	06.046, 14.010,
Andrade SF	06.011, 07.019	Aldujo Di	14.014
Andrade VP	10.019	Araujo BS	04.010, 08.005,
André ACGM	14.007	Aldujo D3	09.035, 09.055,
Andre DM	04.039		10.013, 10.020,
André E	03.017, 05.012		09.036, 09.078
Andreolla MCA	02.027	Araújo EG	01.001
Andreotti DZ	02.023	Araujo EVO	09.037
Andricopulo ADA	02.027	Araujo FA	07.013, 09.031,
Anesio A	03.020	Ardujo I A	09.051, 06.009
Angelis CD	06.007	Araujo GS	10.014, 10.017,
Angelo LKGA	02.032	/ liddjo 05	10.025, 14.008
Anhê GF	07.004	Araujo HFP	14.007
Anjos FF	08.036	Araújo IGA	06.022, 06.057
Anjos JV	06.054, 06.055	Araújo JAN	09.042
Antunes E	04.039, 06.001,	Araújo JI	10.014
	07.012, 07.018,	Araújo JMD	04.028, 04.058
	14.002	Araújo JMS	11.002, 11.016
Antunes VR	04.016	Áraújo Junior JX	09.048, 06.003,
Anzollin G	09.072	· ··	12.004, 12.005
Aquino JS	07.001	Araújo Júnior RF	08.002
Aquino TM	12.004, 12.005,	Araujo LA	11.006, 11.008,
I	12.013	,	02.032, 11.007
Aragão FB	02.028	Araújo LCC	, 09.040
Aragao KS	04.021	Araújo LFLMF	04.058
Aragão TP	09.062	Araújo MR	03.018
Arantes ACS	04.012, 04.020,	Araújo MVD	01.009
	04.022	Araújo RSAD	09.073
Araruna MEC	08.016, 08.021,	Araujo RTD	01.011
	08.033	Araujo SMS	09.055, 10.026
Araujo AA	08.002, 07.020	Araujo TSL	09.054, 11.017
Araujo AAS	04.028	Araujo W	06.047
Araujo AAS	09.059	Arcanjo DDR	06.038
-		-	

51st Brazilian Congress of Pharmacology and Experimental Therapeutics

	10.010		
Armas JPR	10.010	Barbosa AIDS	03.004
Arrifano G	11.005	Barbosa ALDR	09.064
Arroxelas Silva CL	02.035	Barbosa CCB	07.020
Arruda AV	06.022, 06.057	Barbosa Filho JM	09.073
Asmat RJC	10.024	Barbosa FWX	06.005
Assef ANB	04.015, 04.043	Barbosa IR	05.015
Assis ABBD	02.004, 02.031	Barbosa JGC	09.061
Assis JB	04.030	Barbosa L	06.047
Assis SKC	09.033	Barbosa LA	10.019
Assreuy AMS	08.012, 08.031	Barbosa LB	09.070
Assreuy J	04.004, 06.034,	Barbosa MS	09.006, 09.041
	06.040	Barboza KRM	08.007
Assunção HCR	06.027, 06.042	Barcellos I	09.004, 09.060,
Autran Ll	06.037, 06.039		09.068
Avelar JLDS	01.009	Barenco TS	06.030, 06.035
Avellar MCW	01.004, 07.011,	Barja Fidalgo TC	01.007, 04.054
	07.017, 07.022	Barp CG	06.040
Ávila TV	02.009	Barra A	04.040
Awata WMC	06.010	Barreiro EJB	06.039
Ayres D	03.017	Barreiro EJDL	01.009
Azeredo F	11.009, 11.013,	Barreto AS	09.059
	11.016, 11.018,	Barreto E	04.010, 04.019,
	11.019		04.032, 04.036,
Azeredo FJ	11.002, 12.001		08.005, 09.033,
Azevedo A	01.006		09.035, 10.013
Azevedo FLAA	06.022, 06.044,	Barros AB	09.019, 10.004,
	06.057		10.014, 10.017,
Azevedo GA	04.027, 07.003		10.025, 12.007,
Azevedo IEP	06.008		14.008
Azevedo JG	03.008	Barros FCN	09.064
Azul FVCS	02.030, 09.037	Barros GMDO	01.008
Azzolin VF	03.015, 09.067	Barros ML	08.001, 08.011
_	,	Barroso LC	04.014
В		Bartolini M	02.024
Baes CW	11.012	Bassi EJ	12.018
Baker J	01.003, 06.020	Bastos L	10.001
Balbino AM	04.027, 04.045,	Bastos Pereira AL	09.056, 09.065
	07.003	Batista CL	09.042
Baldisserotto B	09.032, 09.049,	Batista JS	08.005
	09.070	Batista LM	08.002, 08.016,
Balliano TL	09.084		08.020, 08.033
Bandeira AM	10.021	Batista RIM	, 06.007, 06.049
Bandeira Júnior G	09.034	Becker AG	09.032
Bandeira SRM	04.007	Becker G	05.002
Bannwart CM	01.017	Bel ED	02.020
Barata LESB	05.023	Bello MA	11.015
Barbeiro A	10.001	Belo LMC	08.031
Barbisan F	03.015, 09.067	Bem AF	04.051

102 51st Brazilian Congress of Pharmacology and Experimental Therapeutics

Bem GF	09.002, 09.003,	Borges GK	09.056	
	09.004, 09.026,	Borges JAT	09.001	
	09.044, 09.060,	Borges LFC	10.021	
	09.068	Borges MAH	11.009	
Bendhack L	06.016	Borges VF	06.010; 06.020	
Benedet PO	06.040	Bortolanza M	02.020	
Benevides NMB	04.015, 12.015	Bouskela E	04.054	
Bergeron JD	07.021	Bouvier M	01.015	
Bernardino AC	06.003, 09.025,	Braga ACM	11.011	
	09.027, 09.048,	Braga JRM	09.023	
	09.071, 12.010	Braga KMSB	01.001	
Bernardo RRB	14.019	Braga WF	04.008	
Berro LF	03.002, 03.012,	Brandão CM	11.019	
	03.024, 03.026	Brandão GCB	04.010	
Bersani Amado CA	04.049	Brasil AF	04.040	
Bertagna N	03.020	Braun LE	03.015	
Bertoglio LJ	03.007	Brazão SC	06.026, 06.037,	
Bertolino J	06.027, 06.042		06.039	
Bertollotto GM	07.012, 14.002	Brighente IMC	02.019; 02.027	
Bevilaqua F	09.020	Brito ACL	03.027; 03.011	
Bezerra CO	07.001	Brito DS	09.073; 09.031	
Bezerra DP	10.015	Brito FCF	06.026; 06.037;	
Bezerra GF	06.008		06.039; 07.009	
Bezerra MM	04.052	Brito IRR	02.015, 02.022,	
Bezerra MS	07.008		02.032, 02.033,	
Bezerra PKV	11.009		12.018	
Biano LS	09.080	Brito LM	09.011	
Bindá AH	09.015	Brito MC	08.026	
Bingana RD	09.064	Brito SA	09.062	
Bispo JMM	09.083	Brito W	08.011	
Bochi GV	03.019	Britto Júnior JB	06.001	
Bodin A	04.018	Britto MHRM	08.015; 08.022	
Boeing T	06.011, 07.019	Brufatto JPT	02.031	
Bolognesi ML	02.024	Brum ES	04.002, 05.001,	
Bolsoni JA	06.023		05.014	
Bolzani VS	10.022	Brusco I	04.002, 05.002	
Bom AOP	05.024	Busnardo CB	02.029	
Borba EFO	09.012, 09.016,	Bustamante CG	10.024	
	09.038, 09.057,	С		
	08.025	Cabral B	06.006; 06.057	
Borba LA	09.076	Cabral GNDV	09.024	
Borba MMP	09.061	Cabral PFA	09.056; 09.065	
Borbely AU	02.015, 02.033,	Cairasco NG	02.006	
	02.036, 07.021	Cajado AG	04.042; 10.021	
Borbely KS	07.014.07.021	Calazans MO	09.058	
Bordin S	07.004	Calderon OH	10.024	
Borelli P	04.005	Caliendo G	04.035	
Borges G	02.001	Calil Elias S	09.028	
51st Brazilian Congress	of Pharmacology and Experi			103

Calinta CIC	00.000	Carneiro SMP	14.002
Calixto SIS	09.082		14.003
Calmasini FB	07.018	Carneiro TLGO	11.018
Calo G	03.004; 03.008;	Carnio EC	06.010
Color ANA	05.012	Carollo CA	12.002
Calvo AM	11.004	Caron BO	09.032
Camacho Pereira J	05.011	Carraro DM	10.019
Camargo A	02.002	Cartaxo TN	04.036
Camargo EA	04.058; 09.039;	Carvalho AA	09.046, 10.002,
	09.080; 09.083		10.011, 10.020,
Camargo SB	06.032; 09.008;		10.026
	12.001	Carvalho CMM	08.012
Camilo KLA	06.056; 08.006;	Carvalho CRO	04.016
	09.013; 09.015	Carvalho EF	06.056, 08.006,
Campagnaro BP	06.015;08.007,		09.013, 09.015
	12.006	Carvalho FAA	14.003
Campesatto EA	04.009, 05.013,	Carvalho JL	08.023, 08.034,
	09.079		09.029
Camponogara C	04.002, 04.031	Carvalho JPS	11.008
Campos AC	03.018, 03.005	Carvalho LCRM	09.003, 09.004,
Campos ACP	05.024		09.026, 09.002
Campos DCO	08.035; 09.037	Carvalho MBT	09.080
Campos DO	03.027	Carvalho PO	11.001
Campos DR	11.001	Carvalho RCV	14.003
Campos HM	02.014	Carvalho SNPBD	09.074
Campos JF	12.002	Casagrande FB	04.046
Campos MM	01.005, 05.015,	Castro DTH	12.002
		Castro Júnior C	05.017
	10.003, 10.018,		
Common D	09.010	Castro KCF	09.052
Campos R	06.001	Castro MM	06.004, 06.031,
Campos WVA	14.006		06.033, 06.052
Cancela LM	11.003	Castro MRC	10.009, 10.017
Caneppa S	03.006	Castro NG	01.010, 12.011,
Canuto KM	09.081		02.001, 02.028
Capelozzi VL	04.012	Castro OW	02.015, 02.022,
Capettini LSA	04.008, 04.040		02.032, 02.033,
Cardia GF	04.049		02.035, 02.036
Cardoso GKRS	05.016	Castro PFS	08.030
Cardoso JFSC	09.061	Castro Pinheiro C	06.021
Cardoso Júnior CDA	14.004, 14.005,	Caumo W	05.010
	14.015	Cavada BS	08.012
Cardoso TC	01.002	Cavada BSC	08.031
Cargnelutti JF	09.034	Cavalcante Araújo PM	04.032
Carmo JOS	04.019, 04.036,	Cavalcante FA	07.001, 07.006,
	09.079		09.007
Carmo LD	08.035, 09.064	Cavalcante FS	08.031
Carmo PLC	14.006	Cavalcante FSA	08.019
Carn CMC	07.020	Cavalcante GL	06.038, 08.008,
Carneiro FS	06.020, 06.041		08.015
		······································	

104 51st Brazilian Congress of Pharmacology and Experimental Therapeutics

Cavalcante GTS	02.022	Conceição Silva GF	02.035
Cavalcante HC	07.001	Conde SO	06.033
Cavalcanti LAMN	10.027	Cordeiro LMC	10.005
Cavalcanti MD	12.009	Correa AMC	04.044, 04.054
Cavalcanti PMS	08.017	Corrêa FMA	02.029
Cavalcanti SMG	08.017	Corrêa FOB	02.009
Cavalheiro AJ	10.022	Corrêa FRFB	09.024
Cavalheiro TN	14.004	Corrêa R	06.032
Cavaliere E	10.005	Correia ACC	
Cavariere E Cazarin CA		Correia WBZGB	04.036, 09.033
Cechinel Filho V	03.001		02.005, 02.017, 02.018, 02.022,
	06.011; 06.032; 07.019; 09.008;		
			02.034, 12.012,
Color DD	09.031	Corri Zuelli E	12.014
Cejas RB	11.003	Corsi Zuelli F	04.041
Celestino RCA	04.043	Corso CR	10.005
Cerqueira ARA	04.013, 04.035,	Cossetin LF	14.015
	04.050, 09.083	Costa AD	08.035
Cerqueira GS	08.023	Costa AS	08.035
Cerqueira NDA	03.002	Costa BA	09.040
Cesar MDOC	09.045	Costa BNC	11.017
Cesario FRAS	05.005, 05.019	Costa CAD	09.002, 09.003,
Chacur M	05.021		09.004, 09.026,
Chagastelles PC	01.005		09.044, 09.060,
Chaves Filho AJM	09.021		09.068
Chaves HVC	04.052	Costa DS	08.029
Chaves LDS	09.029, 09.064	Costa EA	02.014 , 08.008
Chaves LS	08.003, 08.018,	Costa FA	06.002
	08.028, 11.017	Costa IV	06.053
Chaves MH	09.046	Costa J	10.003
Chin CM	12.003	Costa JAMD	03.014
Chitolina B	03.015, 09.067	Costa JG	14.009
Chitolina R	09.020	Costa JJN	04.052
Cimarosti HI	02.025	Costa LB	09.061
Cinelli LP	04.043	Costa MD	02.014
Cipriani DS	09.065	Costa MDA	02.015, 02.033,
Cipriani TR	05.022		02.036
Clarke J	02.028	Costa MDR	08.023
Clemente LP	08.030	Costa PMS	10.007, 10.008
Clementino neto J	02.012	Costa RDS	09.051
Coavoy Sánchez SA	04.035	Costa RM	06.017,06.045,
Côco LZ	06.015, 08.007		06.050
Coelho EB	11.014	Costa SKP	06.036, 07.018,
Coeli lacchini FB	11.012		04.013, 04.016,
Coimbra JPSA	03.011, 03.024,		04.035, 04.050,
	03.013		09.083
Coitinho LB	12.006	Costa T	11.009, 11.013
Coldebella R	09.049, 09.070	Costa TCP	09.038
Colombini ishikiriama Bl	04.024, 04.048	Costa TEMM	10.006

51st Brazilian Congress of Pharmacology and Experimental Therapeutics

Costa TJ	01.013	Dallazen JL	05.022
Costa VCDO	09.007, 09.033	Dall'Orsoletta BB	09.072
Coutinho DS	04.056	Dalmagro AP	02.002, 03.001
Couto RD	06.009, 09.053	Dalmora SL	14.004, 14.005,
Crespo Lopez ME	11.005	Baimora de	14.015
Crestani CCC	02.029	Damasceno BPGDL	09.062
Criddle DN	08.012	Damasceno LEA	04.033
Crippa JA	05.016	Damasceno SRB	08.012, 09.082
Cruz FC	03.012, 03.020,	Damião MJ	12.002
Cruzire	03.026	Daniel C	04.026
Cruz IBM	03.015, 09.067	Dantas NO	11.008
Cruz JS	06.009	Dantas R	03.017
Cruz L	04.031	Dassi M	11.011
Cruz LPL	14.003	Davanço MG	11.001
Cruz LS	12.008	David JM	05.025
Cruz teixeira JMC	09.018	David JPL	05.025
Cruz VDSC	01.001	De Nucci G	06.001
Cruz YMC	06.027, 06.042	Del ben CM	04.041
Cuman RKN	04.049	Delgobo M	05.018
Cunha BSN	09.067	Delgobo M	07.002
Cunha FQ	01.003, 04.014,	Demachki S	01.006
	04.033,	Deng J	14.001
	05.020,06.010,	Deza ponzio R	11.003
	06.019, 06.020	Dias AS	08.005, 09.035
Cunha GD	05.015	Dias AT	12.006
Cunha LDLL	09.014	Dias DBS	05.005, 05.019
Cunha LLM	09.026	Dias DF	04.054
Cunha MD	11.009, 11.013	Dias Júnior BC	03.002, 03.011,
Cunha TM	04.014, 04.033,		03.027
	05.002, 05.003,	Dias Júnior CAC	06.012, 06.028,
	05.020, 06.020		06.048
Cursino M	10.001	Dias TLM	02.009
Cury RMC	02.008	Diefenbach ICF	14.005
, Cusinato DAC	11.014	Diniz AFA	07.006, 09.040
Cyrino FZGA	04.054	Dionisio TJ	, 04.024, 04.048,
D			11.004
		Dittrich RL	10.005
D'Ancona CA	07.012	Dittz D	09.063
Daboit TC	09.011	D'Oca MGM	02.012
Dagnino APA	01.005, 05.015,	Dolabella SS	09.078
D 1 55	10.003	Domingos LBD	02.004
Daher EF	06.008	Dourado FF	08.024, 14.008
Dal Magro J	09.020, 09.072	Dourado TMH	09.075, 12.008
Daleprane JB	09.068	Du Z	14.001
Daliry A	04.011, 06.046,	Duarte DA	01.013, 01.015
	09.066, 14.010,	Duarte DB	05.007, 09.022
	14.014	Duarte FG	11.001
Dalla Corte CL	05.014	Duarte Filho LAMS	08.011

106 51st Brazilian Congress of Pharmacology and Experimental Therapeutics

Duarte FS	02.005; 02.011; 02.013; 02.019; 02.034	Ferrari FT Ferreira C Ferreira CCD	09.034; 09.070 04.048 14.006
Duarte IDG	05.006	Ferreira FN	06.038
Duarte RS	08.035	Ferreira GC	06.007
Durco AO	09.059	Ferreira GC	06.049
Dutra MB	01.018	Ferreira J	05.004; 05.018
Duzzioni M	02.005, 02.015,	Ferreira JPB	09.077
	02.017, 02.018,	Ferreira Júnior RS	09.021
	02.022, 02.033,	Ferreira LGA	07.022
	02.034, 02.036	Ferreira LLGFG	02.027
E		Ferreira LMM	10.021
	00.054	Ferreira LVA	08.004, 08.022
Eaton P	09.054	Ferreira MA	05.004
Ernetti J Escobar AF	02.016	Ferreira MKA	02.030; 06.014
	14.015	Ferreira PBF	07.006, 09.040
Espírito Santo LC Espírito santo RF	06.030, 06.035 05.009, 05.025	Ferreira PMP	05.008, 10.022
Estevam CDS	04.010, 08.005,	Ferreira PN	01.017
ESTEVAILICDS	09.035, 09.036,	Ferreira RCS	09.074
	09.055, 09.078,	Ferreira RG	04.033
	10.013, 10.020	Ferreira SCA	04.025, 04.055
Estrela Lima A	10.023	Ferreira SRD	07.001, 09.007
	10.025	Ferreira SS	04.046
<u>F</u>		Ferreira ST	02.028
Fagundes DL	04.006	Ferreira TPT	04.020, 04.044,
Fahning BM	06.016		04.056
Faria FAC	11.004	Ferreira ZFS	04.034
Farias CJ	03.003	Ferro JNS	04.036, 08.005,
Fátima AD	03.001		09.033, 09.079
Fazan Jr. R	06.004	Fialho MFP	05.001, 05.014
Fechine Jamacaru FV	09.050	Figaro Drumond FV	11.012
Fedoce AG	06.041	Figueiredo CP	02.028
Feijo P	06.047	Figueiredo IAD	09.007
Feitosa KB	04.016	Figueiredo Júnior ATF	08.036
Feitosa MBJ	06.051	Figueredo JS	08.015
Félix FB	04.058	Figueroa MC	10.024
Fernandes C	04.021	Filev R	02.010
Fernandes G	11.019	Filgueira FP	06.045
Fernandes HB	09.042	Finetti L	03.008
Fernandes I	06.021	Finotelli PV	08.036
Fernandes L	06.027, 06.042	Fischer SPM	05.014
Fernandes MLM	09.061,09.061	Florêncio KGD	09.081
Fernandes MZLCM	09.061	Florentino RM	04.040
Fernandes PACM	10.016	Flores EEI	04.011, 06.046,
Fernandes VA	12.017		09.066, 14.010,
Fernández Hubeid LE	11.003		14.014
Fernandez J	09.017	Floresta LRS	11.007
Ferrari DP	02.020	Floriano RS	09.017

51st Brazilian Congress of Pharmacology and Experimental Therapeutics

Flower RJ	04.020	Garcia TDA	09.028
Fock RA	04.005	Garlet QI	09.049
Fonseca EJS	07.021	Gasparotto Júnior A	06.024
Fonseca F	05.017	Gatto CC	12.014
Fonseca GAA	04.006	Gauze GDFG	09.001
Fonseca KM	08.023, 08.034	Gavioli EC	03.004, 03.008,
Fonseca MMV	08.018		03.014, 03.017,
Fonseca SA	09.074, 14.009		05.012, 07.005,
Formagio ASN	09.001		07.008, 07.015
Formiga RO	04.057	Gazarini L	03.007
França ACH	04.006	Geraix J	04.042
França ARS	05.008	Gerlach RF	01.006; 01.017
França JC	05.005, 05.019	Ghedini PC	02.014
França LFDC	09.041	Giachini FR	04.006
Franca neto A	06.047	Gicquel T	04.018
Franchin M	09.043	Gifoni MAC	10.019
Francisco A	12.003	Gil NL	04.027; 07.003
Francisco KM	05.024	Giorgi R	05.021; 05.024
Frederico N	02.001	Girão ES	14.018
Freire GDP	09.005, 09.046	Gitaí DLG	02.035
Freire JMO	04.052	Gobira PH	03.010
Freire KS	09.080	Godinho RO	01.014; 08.032
Freitas ALP	09.064; 09.082	Godoy ALPC	10.023
Freitas BA	08.032	Gois RWS	10.015
Freitas GA	01.004	Goldani E	01.005
Freitas HPS	09.019, 09.069	Gomes ACCN	03.014
Freitas JA	04.021	Gomes AF	08.014
Freitas RDS	10.003	Gomes BRB	01.012; 04.051
Freitas TC	14.018	Gomes CA	11.016
Fujimaki CMO	14.018	Gomes da Silva EG	02.008
Fukada Alves SY			
Funez MI	04.014 09.022	Gomes E	04.046 05.003
		Gomes F	
Furian AF	11.011	Gomes FI	05.003
Furtado IP	14.018	Gomes FIF	05.020
Furtado MM	06.038	Gomes Filho JV	10.021
Fuse EJ	03.005	Gomes FV	02.003
G		Gomes GC	09.033
Gadelha KKL	06.056, 08.006,	Gomes GL	04.050
	09.013, 09.015	Gomes HS	04.056
Gaissler V	04.053	Gomes JPS	08.029
Galdino EBT	06.002	Gomes LS	05.008
Galindo C	10.005	Gomes LTC	07.005, 07.008,
Gama P	04.037		07.015
Gandini A	02.024	Gomes MA	02.009
Garbieri TF	04.024, 04.048	Gomes MVLD	04.028, 12.009
Garcia de Souza EP	09.009	Gomes MVSW	12.018
Garcia I	06.047	Gomes RO	04.047
		Gomes SVF	10.002, 10.011

108 51st Brazilian Congress of Pharmacology and Experimental Therapeutics

Gomes TGC	08.002	Hartmann DD	05.014
Gonçalves AE	02.024; 03.001	Hecht FB	07.004
Gonçalves BGDS	09.009	Heimfarth L	06.013
Gonçalves DF	05.014	Heinzmann BM	09.032, 09.034,
Gonçalves GO	09.031		09.049, 09.070
Gonçalves MH	08.037	Henriques GM	03.002, 03.016,
Gonçalves PFR	02.001		03.024, 03.026,
Gonçalves RLG	04.007		10.006
Gonçalves RM	05.018; 07.002	Heredia JM	10.024
Gonçalves TAF	06.006, 06.044,	Hogaboam C	04.044
	06.057	Holanda AAC	08.031
Gonçalves TDS	09.018	Holanda TBL	04.015
Gontijo LS	07.009	Holanda TM	09.050
Gonzaga NA	06.010, 06.041	Holanda VA	05.012
Goulart MTG	02.029	Holanda VAD	03.004, 03.008
Gouveia DN	12.014	Hora VRS	06.009, 06.032
Gouveia FS	06.005	Hou X	14.001
Graca AS	10.002, 04.010,	Huang J	14.001
	09.035, 09.055,	Hyslop S	09.017
	10.013, 10.020,	, ' I	
	10.026	I	
Granzotto N	03.006	Iles B	08.003, 08.024,
Graziani DG	01.001		08.028, 09.054,
Greggio S	10.003		10.004, 14.008
Gressler LT	09.032	locken FHS	11.015
Grifoni D	02.024	Irazoqui FJ	11.003
Guarnier LP	06.024	Issa JPM	01.006
Guedes EAC	12.018	Izídio GDS	03.006
Guerrero HJJ	10.024	J	
Guerrero Vargas JA	09.015		
Guerrini R	05.012	Jacintho FF	06.001
Guimaraes FS	02.003, 03.005,	Jackson EK	01.014
Guinaraes i s	03.007, 03.018,	Jancar SJ	04.003
	03.021, 03.022,	Jayawardhana S	12.003
	05.003	Jesus AM	06.032
Guimarães JDS	05.006	Jesus LOSD	03.011
Guimarães JPT	04.003, 04.030	Jesus NMSD	03.002
Guimarães MJR	12.011	Jesus RLC	06.009, 07.013,
Guimarães NC	04.051	JESUS NEC	09.031, 09.051
Gurgel D	04.021	Jesus TG	08.002
Gurgel DC	10.021	Joca S	03.010
Gusmão NBD	09.012, 09.038	Jorge ARC	09.021, 09.023
Guzatti JGG	04.026, 09.072	Jorge RJB	06.005, 09.021,
	04.020, 05.072	1018C 10D	09.023
Н		Jorge TM	09.025
Hallak J	05.016	Juiz PJL	05.025, 09.053
Hamaji MP	04.049	Junqueira SC	02.025
Hamoy M	01.017	Juruena MFP	11.012
Hao E	14.001		11.012
51st Brazilian Congress o	of Pharmacology and Experim	ental Therapeutics	109

к		Leser FSL	01.010
Kawamoto EM	02.023	Lewis MD	12.003
Kelly JM	12.003	Lima ACBL	10.013
Kinker GS	10.016	Lima AJO	03.011, 03.012,
Kisaki ND	03.003, 03.016,		03.016, 03.025,
	03.024		03.026, 03.027
Klassen G	10.005	Lima BS	09.059
Klein A	04.008, 04.040	Lima CAA	08.005
Krahe TE	10.006	Lima CC	08.019
Kuhn GCES	05.006	Lima CKF	14.019
Kummerle AE	07.009	Lima CKFDL	05.011
Kümmerle AEK	06.039	Lima DB	06.008
Kushima H	07.007, 07.011	Lima DJB	10.008
Kushima HK	07.016	Lima EKF	08.019, 08.037
Kutianski AKGV	09.009	Lima ES	01.016
_	05.005	Lima Filho ACM	04.008
<u>L</u>		Lima FMDS	03.014
Lacchini R	06.019, 11.012	Lima FRSL	01.010
Lacerda Júnior FF	07.006, 09.040	Lima GBDC	09.031
Lagatta DC	02.004, 02.031	Lima GC	09.082
Lagente V	04.018, 04.032	Lima GDM	02.007
Lana VLR	02.009	Lima GF	06.026; 06.037,
Lanchote VL	11.014, 11.015		06.039
Landgraf MA	04.027, 07.003	Lima GMD	09.057
Landgraf RG	04.027, 07.003	Lima GTD	09.012, 09.016
Lanza M	12.016	Lima JPM	07.001
Lanzetti M	08.037	Lima Júnior RCP	04.021, 04.042,
Lanzetti MLDD	08.036		05.019, 10.021
Laranjeira EPP	08.031	Lima JVO	, 06.038; 08.008;
Lauria PSS	05.009, 09.053		08.015; 08.022
Lazarini JG	09.043	Lima LM	01.009
Leal JC	02.011	Lima LS	04.037
Leal JC	02.019	Lima LSBD	09.009
Leal LKAM	02.030, 09.037	Lima MAS	04.052; 08.012
Leal MA	06.015	Lima MPD	05.008
Leitão RFC	08.023	Lima MRFD	09.055
Leite AB	04.025; 04.055;	Lima MVA	10.019
	12.005	Lima PASP	03.015
Leite JA	02.007, 11.005	Lima R	03.017
Leite JIA	04.008	Lima RPD	09.005, 09.046
Leite JPC	03.016; 03.025;	Lima RS	08.005
	03.027	Lima TCMD	02.005, 02.034
Leite JPL	02.006	Lima VV	04.006
Leite JRSA	09.019; 09.054	Lima WT	02.007, 04.037,
Leite KESS	08.012		04.038, 04.046,
Leite MFL	04.008, 04.040		08.013
Leite Panissi CRA	05.016	Lins JF	03.003, 03.013,
Leite TCC	09.038, 09.057	2013 31	03.025
	-		00.020

Lins MP	04.019	Machado EBO	03.012, 03.016
Lins SL	12.013	Machado FS	14.008
Lisboa IDF	09.022	Machado JCB	06.014
Lisboa MRP	05.019	Machado KC	10.022
Lisboa SFS	03.022	Machado LR	06.026
Lobato NS	04.006, 06.045	Machado MCA	10.023
Locateli G	02.016	Machado MDL	09.026
Lomonte B	09.017	Machado MLDP	06.003, 09.025,
Lopes A	05.003		09.027, 09.048,
Lopes AAA	09.025, 09.071		09.071, 12.010
Lopes AHP	05.020	Machado MP	04.012
Lopes ALF	08.003, 08.018,	Machado MR	06.045
2000000	08.023, 08.028,	Machado NMDJ	02.030
	08.034, 09.029,	Machado TDB	09.028
	09.054	Maciel PMP	06.044
Lopes C	05.006, 05.017	Magalhães EP	06.008, 06.025,
•		widgallides Lr	
Lopes DCC	09.052		06.053, 09.030
Lopes EM	03.023, 05.008	Magalhães FEA	04.029
Lopes JMC	05.023, 09.052,	Magalhães PDO	09.022
	06.031, 06.033,	Magalhães PJC	06.056, 08.006,
Lopes L	04.013, 14.013		09.013, 09.015
Lopes LGF	06.005	Maganin A	05.020
Lopes MHS	04.042, 10.019	Maganin AGM	04.014
Lopes MLLC	04.026	Maia BHNSM	02.008
Lopes MR	08.031	Maia IC	07.009
Lopes MTP	09.063	Maia MIA	06.051
Lopes RO	06.037; 06.039	Maia PHF	09.050
Lopes VB	14.007	Maior LPS	14.009
Lopes VD	03.005	Malafaia TDOM	09.009
Lopes WL	02.006	Malheiros A	02.002
Loureiro C	04.041	Mansur DM	04.017
Louzada Júnior P	04.014, 04.041	Mansur DS	02.025
Lucchese AM	08.001	Marangoni JA	09.001
Lückmeyer DD	05.004	Maranhão IF	04.049
, Luz BB	05.022	Maria ferreira D	05.022
		Mariani N	07.011
Н		Mariani NAP	07.007, 07.016
Μ		Mariano LNB	06.011, 07.019
Macchi BM	01.006, 01.017,	Marinho AD	06.005, 09.021,
	11.005		09.023
Macedo CAF	08.001, 08.011	Marinho EAV	03.002, 03.003,
Macedo DSM	09.021		03.011, 03.012,
Macedo EC	10.024		
Macedo ICD	05.010		03.013, 03.016,
Macêdo LELD	03.016		03.024, 03.025,
Macedo SJ			03.026, 03.027
	05.004, 05.018	Marinho EM	03.013
Machado CCM	04.014	Marinho Filho JDB	09.019; 09.069;
Machado de Ávila RA	05.014		10.004, 10.009,

	10.014, 10.017,	Medeiros IA	06.006, 06.022,
	10.025, 12.007,		06.044, 06.057
	14.008, 14.011,	Medeiros JVR	08.003, 08.018,
	14.016, 14.017		08.023, 08.024,
Marinho MM	06.025, 09.030		08.028, 08.029,
Marinho YYM	06.013		08.034, 09.006,
Marins K	09.020		09.029, 09.054,
Markus RP	04.034, 10.016		09.064, 09.082,
Marostica E	07.009		10.004, 11.017,
Marques ALX	07.014, 07.021		14.008
Marques AM	06.030	Medeiros ML	04.039
Marques CL	04.016	Medeiros RPD	01.005
Marques EBM	06.039	Meira CS	06.009
Marques FCJ	08.012	Mello MMB	06.004, 06.052
Marques L	04.041	Melo A	04.021
Marques LADC	06.036	Melo AB	07.005, 07.015
Marques MADS	09.022	Melo AP	14.016, 14.017
Martin doimeadios RCR	11.005	Melo APM	14.011
Martins ABM	07.008	Melo ISD	02.015, 02.033,
Martins AMC	06.008, 06.025,		02.036
	06.053, 09.030	Melo KM	09.037
Martins AOPBB	04.029	Melo MCC	04.047
Martins CSM	06.046, 14.010,	Melo PDA	09.018, 09.045
	14.014	Melo PO	08.019
Martins Gomes ACMG	02.008	Melo VMSS	09.009
Martins JO	04.001, 04.003,	Mendes ABA	06.037, 06.039
	04.030, 04.046	Mendes CB	02.012
Martins JP	09.010	Mendes FR	09.076
Martins M	04.023	Mendes HL	08.014
Martins MA	04.012, 04.020,	Mendes MGA	09.011
	04.022, 04.044,	Mendes Neto JM	06.051, 10.002,
	04.054, 04.056		10.011, 10.026
Martins PMRS	04.012, 04.020,	Mendes RFV	06.014
	04.022, 04.044,	Mendonça BS	07.014
	04.054, 04.056	Mendonça MA	06.002
Martins R	11.009, 11.013	Mendonça PDS	02.011
Massarioli AP	09.043	Mendonça TPS	14.007
Mateus F	07.005, 07.015	Meneghetti MR	02.017, 02.018,
Matos JBAGN	02.026	5	04.009, 05.013,
Matos JKRM	04.013		12.012, 12.014
Matos RPS	08.004	Meneses GC	06.008
Matumoto AM	02.023	Meneses Oliveira RC	08.009, 08.029,
Mazaro Costa R	07.020	-	09.042, 14.012
Mechoulam R	05.003	Menezes CA	07.014
Medeiros ACD	08.021	Menezes Filho RO	10.002, 10.011,
Medeiros CFA	06.032, 09.008,		10.020, 10.026
	12.001	Menezes IAC	06.013
Medeiros FD	08.021	Menezes IC	11.012
112 Flat Brazilian Cong			

Menezes IRA	04.029	Moraes WP	01.016, 05.023,
Menezes KLS	05.019		09.052
Menezes MPD	09.003, 09.068	Morais B	02.003
Menezes PMN	08.001, 08.010,	Morais SA	09.084
	08.011, 08.026	Moreira Júnior ECM	03.024
Menezes PR	04.041	Moreira LKDS	02.014
Menezes RRPPB	06.025, 06.053,	Moreira MSA	01.009, 04.009,
	09.030		04.025, 04.055,
Meulman J	11.001		05.013, 09.079,
Meyrelles SS	06.015, 12.006		12.005
Mezzomo H	09.020	Moreira TDS	09.046
Miguel CC	01.013	Moreira TJ	07.009
Milani L	10.005	Moreno MJ	11.005
Miletti LC	09.056	Moreno MOC	10.016
Militão GCG	10.015	Moreno RA	06.001
Mineiro ALBB	09.061	Morgan LV	04.026, 09.072,
Miorando D	02.016	0	12.016
Miranda ALP	05.011; 14.019	Moriel P	10.001
Miranda EP	09.033	Moriya HT	08.013, 04.037,
Miranda IA	02.028		04.038
Mohr A	14.005	Mota DCS	04.010, 09.035,
Moita LA	09.006, 09.041		09.055, 10.013,
Mojeiko G	14.013		10.020
Monica FZ	07.012, 06.001,	Mota KO	09.036
	14.002	Mota KO	09.055
Monteiro BDO	02.010	Mota KO	09.078
Monteiro HSA	06.005, 09.021,	Motta JR	03.015
Montello HSA	09.023	Motta NAV	06.026, 06.037,
Monteiro machado M	09.018; 09.045		06.039, 07.009
Monteiro MMLV	04.023	Moura AF	10.004, 10.009,
Monteiro SMN	09.021	WOULD AI	10.004, 10.005, 10.017
Monteiro VS	04.015	Moura IG	05.013, 09.079
Monti B	02.024	Moura MABF	11.010
Montr B Moore T		Moura NPDS	
Moraes Filho MO	11.004		03.014
	09.050	Moura RO	08.025
Moraes Filho MO	10.004	Moura TMCF	07.001
Moraes Filho MO	10.009	Mourão MRN	08.001
Moraes IA	06.026	Mourão PAS	04.043
Moraes ICOD	09.023	Mourão PASM	09.018
Moraes JC	05.023; 09.052	Müller LG	02.016, 04.026,
Moraes MEA	09.050		09.072, 12.016
Moraes NV	10.023	Muradás TC	10.003, 10.018
Moraes RA	06.032; 09.031	Murari GF	06.001
Moraes SZC	04.010; 09.035;	Murgott J	01.012
	09.055; 10.013;	Muscará MN	04.013, 04.016,
	10.020; 10.026		04.035, 04.050,
Moraes TMP	09.052		06.036
		Muxel SM	10.016

Ν		Niero R	06.011, 07.019
Nani BD	09.043	Nishimura ANN	07.020
Nardi GM	06.034	Nishino FA	07.022
Nascente LC	12.011	Noblat LACB	11.018
Nascimento AAD	09.024	Nobre LMS	04.042
Nascimento ALD	04.056	Nóbrega PA	09.024
Nascimento AM	05.022	Nogueira CN	09.081
Nascimento BF	14.005	Nogueira Júnior FA	09.021
Nascimento CC	14.017	Nogueira KDM	09.054
Nascimento DS	10.011	Nogueira KM	08.018
Nascimento F	02.008	Nogueira MRSN	05.008
Nascimento FG	09.064, 09.082	Nogueira PCL	10.020
Nascimento GA	09.059	Nogueira RC	06.007, 06.031,
Nascimento HG	12.015		06.033, 09.053
Nascimento IRC	09.079	Nolêto IRSG	08.003, 08.018,
Nascimento JHM	06.030		08.024, 08.028
Nascimento JLM	01.006, 01.017	Norberto JN	02.030
Nascimento Junior MV	04.052	Nunes ASS	08.014
Nascimento KS	08.012	Nunes FPB	04.046
Nascimento LMPS	04.036	Nunes ICM	04.025, 04.055
Nascimento N	04.050	Nunes IDP	09.063
Nascimento OA	05.025	Nunes LCC	14.012
Nascimento PGB	09.022	Nunes LED	02.001
Nascimento Silva VN	01.007	Nunes MDSN	09.010
Nascimento TG	09.047, 11.010	Nunes PIG	09.005
Naves LA	05.006	Nunes PIG	09.046
Nazareth AMN	01.010	Nunes RN	02.027
Negri G	09.076	Nunes TAL	09.069
Neiva G	11.006	Obadia RM	11.015
Neiva G	11.007	Silva OBS	02.005, 02.018
Neres HLS	08.014	0	
Neres WS	04.058	-	00.002.00.002
Neri HS	02.014	Ognibene D	09.002, 09.003,
Neri TS	14.009		09.004, 09.026,
Neris RLS	02.028		09.044, 09.060, 09.068
Nerys DAO	03.015	Oliveira A	
Nerys LLDA	09.057		11.009
Neto CMDC	01.015	Oliveira A Oliveira AAR	11.013
Neto FPR	04.007		11.010
Neves FAN	09.009	Oliveira ACP	08.024, 08.034,
Neves FAR	05.007	Olivoiro AD	11.017
Neves FMF	10.023	Oliveira AP	08.003, 08.018,
Neves GA	02.001, 02.028,		08.023, 08.028,
	12.011		08.034, 09.025,
Neves SJF	06.002		09.027, 09.054,
Nicácio DCSP	02.022	Olivoira AP	09.059, 12.010
Nicoli JR	03.003, 03.013,	Oliveira AR	05.005, 05.019
	03.025	Oliveira AS	09.080
114 51 1 0 - 11 0		· · · · · ·	

Oliveira ASDO	02.027	Oliveira L	04.050
Oliveira BC	09.068	Oliveira LES	09.041
Oliveira BCD	09.002, 09.004,	Oliveira LSA	04.007
	09.060	Oliveira MA	04.037, 04.038,
Oliveira BHM	12.008		04.046, 08.013,
Oliveira BTM	12.008, 09.075		09.019, 11.005,
Oliveira C	05.010		12.014
Oliveira CG	05.021	Oliveira MC	05.012
Oliveira DF	08.005	Oliveira MCB	08.037
Oliveira DMD	02.009	Oliveira MG	07.012, 07.018;
Oliveira DMN	06.056, 08.006,	ontonumo	14.002; 04.039
	09.013, 09.015	Oliveira MM	14.012
Oliveira EBD	01.015	Oliveira MRC	04.029
Oliveira ECPD	01.016	Oliveira NVDM	09.041
Oliveira FA	04.007	Oliveira PALD	09.012
Oliveira FCE	10.007, 10.009,	Oliveira SCM	06.045
	10.012	Oliveira SHP	04.048
Oliveira FFB	09.064	Oliveira SM	04.002, 04.031,
Oliveira Filho AD	06.002		05.001, 05.002,
Oliveira Filho RM	04.037, 04.038		05.014
Oliveira FLD	09.028	Oliveira TAL	04.044, 04.054
Oliveira FR	01.017	Oliveira Tintino CDM	04.029
Oliveira FRMB	04.004	Oliveira TM	10.004
Oliveira FTB	09.005, 09.046	Oliveira WS	09.048
Oliveira GAL	09.054	Olivieri EHR	10.019
Oliveira GG	01.009	Oltramari AR	04.026
Oliveira GLSO	03.023	Omoto ACM	06.004, 06.017
Oliveira GM	04.024, 04.048,	Oria R	11.005
	11.004	Ortiz sanchez JM	10.010
Oliveira GR	08.015, 08.022	Ott D	01.012
Oliveira HD	08.035, 09.037	Ovider IC	09.077
Oliveira HR	05.007		
Oliveira IS	08.022		
Oliveira J	11.006		
Oliveira JCPL	06.022, 06.044,		
	06.057		
Oliveira JM	11.007, 11.008		
Oliveira JP	09.083		
Oliveira JSD	09.006, 09.041		
Oliveira JT	05.011		
Oliveira Júnior PC	09.001		
Oliveira JV	09.072; 12.016		
Oliveira KB	02.015; 02.033		
Oliveira KCD	09.028		
Oliveira KLDS	02.036		
Oliveira KRV	06.003, 09.025,		
	09.027, 09.048,		
	09.071, 12.010		

Р		Pereira AC	10.021
Pacheco ALD	02.015, 02.022,	Pereira AF	05.005, 05.019
	02.033, 02.036	Pereira AMN	05.023
Pacheco G	08.003, 08.018,	Pereira CA	06.041
	08.024, 08.028,	Pereira CMP	14.018
	08.029, 09.029,	Pereira da Silva E	09.042
	11.017	Pereira ENGS	04.011, 06.046,
Pacini ESA	01.014, 08.032		09.066, 14.010,
Padovan C	03.017		14.014
Pagano RDLP	05.024	Pereira EPS	08.009
Paglia S	02.024	Pereira EWM	06.013
Paier CRK	10.007	Pereira FIA	10.014, 10.025
Paixão FMDP	01.001	Pereira Filho RN	10.002
Palheta Junior RC	08.001	Pereira GCP	03.019
Palombo P	03.020	Pereira JFB	10.021
Palomino pacheco M	10.010	Pereira JIA	10.025
Palozi RAC	06.024	Pereira JLA	03.027
Pamplona FAP	02.008	Pereira Junior LDC	09.082
Pantoja PS	08.012	Pereira KDS	09.052
Panunto PC	09.017	Pereira LC	11.002, 11.016
Parada JPPC	09.009	Pereira LCA	14.012
Paredes gamero EJ	01.011, 12.002	Pereira LCO	09.033
Parente JM	06.004, 06.031,	Pereira LL	09.077
	06.033, 06.041,	Pereira M	04.021
	06.052	Pereira PS	09.057
Parisi VA	04.024, 04.048	Pereira RR	09.053
Parodi TV	09.032	Pereira SC	11.012
Passos GR	07.012	Pereira Silva W	02.035
Passos GR	14.002	Pereira TMC	08.007
Patrão Neto FC	09.045; 09.018	Peres CN	10.009, 10.017
Patricio DO	04.017	Perez ADC	09.058
Paula CAA	10.019	Perobelli RF	14.004, 14.005,
Paula ES	06.012, 06.028,		14.015
	06.048	Perretti M	04.020
Paula GHO	06.007, 06.031,	Perroud Jr MP	10.001
	06.033	Persona IS	06.019
Paula TC	06.049	Pessoa C	09.011, 10.007,
Paulino ET	06.003, 09.025,		10.008, 10.009,
	09.027, 09.048,		10.012
	09.071, 12.010	Pessoa MLS	08.002, 08.016,
Paulino PAT	02.035		08.020, 08.033
Pauw ED	12.006	Pessoa ODL	09.005, 09.019,
Pedrazzi C	09.049, 09.070	5 55	09.069, 09.081
Pedro SS	06.029, 06.043	Pessoa RF	07.001, 09.007
Pegoraro NS	04.002, 04.031,	Pessoa RT	04.029
	05.001	Pestana AM	09.014
Penido C	10.006	Petri C	08.017
Penteado LAM 116 51st Brazilian Con	09.047 gress of Pharmacology and	Petry F Experimental Therapeutics	09.072

Pimenta AB Pimenta ABT Pimenta ATA Pimentel AS Pincinato E	06.015 08.007 04.052, 09.037 04.022 10.001	Prado DS Prado WA Praia RS Praia RS Prazeres LDKT	04.033 02.026 03.015 09.067 09.062
Pinheiro AN	09.045	Prediger RDS	02.025
Pinheiro CG	06.056, 08.006,	Princival IMRG	09.012, 09.057
Pinheiro LC	09.013, 09.015 06.007, 06.019,	Procópio CAM Prudente AS	04.056 05.004
	06.031, 06.033	Pupo AS	01.003, 06.020
Pinheiro Neto FP	05.008		01.000, 00.020
Pinho CCES	02.013	Q	
Pinho SS	08.034, 09.029,		14.001
	11.017	Qin L	14.001
Pinna GP	01.004	Queiroz AC	04.025, 04.055,
Pinto CS	09.037	Queirez BCCII	12.005
Pinto FCL	09.081	Queiroz BCSH	08.014
Pinto I	03.017	Queiroz LA	04.001, 04.030
Pinto IR	04.052	Queiroz RRM	10.012
Pinto LSRP	07.020	Quiles CL	04.034, 10.016
Pinto NC	09.071	Quintanilha J	10.001
Pires AF	08.031	Quintans JSS	04.010, 06.013,
Pires CS	04.053	Quintans Junior LJ	12.014
Pires LC	09.070	Quintans Junior LJ	04.010, 06.013,
Pires LDC	09.049		08.009, 09.059,
Pires TM	01.016, 05.023		12.009, 12.010,
Placido A	09.054	Outintas LENA	12.014
Poeta E	02.024	Quintas LEM	01.008, 06.047
Poian ATD	02.028	Quintella ML Quinton L	02.010 12.006
Polonio LCC	06.012, 06.048	-	12.000
Pons F	04.018	R	
Ponte CG	06.030, 06.035,	Rabelo CC	02.009
	09.045	Rabelo LMA	08.035
Pontes AEF	02.009	Rachetti V	03.017
Pontes FDL	09.079	Raimundo T	07.011
Pontes LB	14.018	Raimundo TRF	07.007, 07.016
Pontes THA	07.005, 07.008,	Ramalho TC	06.030
	07.015	Ramos J	01.006
Portela LR	04.052	Ramos KRDLP	09.012, 09.016,
Porto FL	07.014		09.057, 08.025
Porto ICCDM	09.047	Rangel GFP	08.035
Porto NM	09.014	Rao VS	09.005
Portugal C	09.054	Rebouças BDS	08.031
Povaluk AP	09.056	Rebouças LV	10.007, 10.008,
Prado AF	01.017		10.012
Prado AFD	01.006	Regginato A	09.020
Prado CM	04.037	Regner GG	05.010
Prado DS	03.021	Rêgo NTDS	14.011, 14.016

	00 001	Deebe DC	
Rêgo RIA	08.021	Rocha DG	06.005
Reichmann HB	03.007	Rocha DG	09.050
Reis DR	02.009	Rocha Junior JRS	09.045
Reis Filho AC	03.023, 05.008	Rocha LM	12.009
Reis Filho ACF	14.012	Rocha LMC	12.007
Reis HPLC	14.018	Rocha ML	08.030
Reis HS	03.002, 03.012,	Rocha NN	06.021, 06.043
	03.026	Rocha NR	14.002
Reis MDS	04.019, 07.014	Rocha T	09.017
Relvas J	09.054	Rocha TJM	14.009
Resende ADC	09.003, 09.004,	Rocha TM	09.037
	09.026, 09.060,	Rocha VN	03.003, 03.025
	09.068	Rodarte RS	12.018, 02.032
Resende ADCR	09.002, 09.044	Rodrigues ABF	14.018
Resende GO	06.035	Rodrigues AKBF	06.003, 09.027,
Resstel L	02.004, 02.031,		09.048, 09.071,
	03.022		12.010
Reys JRM	11.010, 12.014	Rodrigues EG	12.002
Rezende AA	06.006	Rodrigues GRDS	01.007
Rezende DC	04.007	Rodrigues IRS	03.012, 03.024,
Rezende LCD	12.006		03.026
Rezende MSA	06.057	Rodrigues JLN	14.018
Ribas JAS	07.009	Rodrigues KADF	09.069
Ribas MM	12.016	Rodrigues KE	01.017
Ribeiro CM	07.022	Rodrigues KL	04.011, 06.046,
Ribeiro CMR	07.017	-	09.066, 14.010,
Ribeiro EAM	09.067		14.014
Ribeiro EAN	06.003, 09.025,	Rodrigues L	04.050
	09.027, 09.048,	Rodrigues LC	12.008
	09.071, 12.010	Rodrigues P	09.049
Ribeiro EE	03.015, 09.067	Rodrigues P	09.070
Ribeiro FOS	08.024, 09.011	Rodrigues RRL	09.069
Ribeiro IM	09.053	Rolim LA	09.062
Ribeiro LAA	08.001, 08.011,	Rolim LAR	08.026
	08.026	Roman Júnior WA	02.016
Ribeiro LD	12.009	Romão MH	09.044, 09.060,
Ribeiro LR	04.042		09.068
Ribeiro MF	09.028	Romão PVM	06.024
Ribeiro MR	02.007, 04.037,	Romariz SA	02.010
	04.038	Romeiro LAS	12.011
Ribeiro MTL	08.030	Romero T	05.006, 05.017
Ribeiro NBS	04.012, 04.044	Rosa EVF	11.011
Ribeiro PRV	09.081	Rosa IA	09.034
Ribeiro TFF	08.011	Rosa MH	04.033
	04.038		09.067
Riffo Vasquez YR Rigonati CA		Rosa TSM Rosalen PL	09.043
0	04.037		
Rivera IR Rocco PRM	06.002	Rosales TO Rosales TO	04.004
	04.022		06.034

Rosenstock TR	01.018	Santos ACA	04.005
Rossoni L	06.047	Santos ACA	09.055
Roth J	01.012	Santos AB	14.009
Rowan EG	09.017	Santos ALLM	08.005
Roza DL	04.041	Santos AM	09.036
Russo M			
Ruzza C	04.046	Santos AM	09.078
NUZZA C	03.004, 03.008,	Santos BLR	14.019, 05.011
	05.012	Santos BM	03.019
Ryffel B	04.033	Santos CF	04.024, 11.004
S		Santos DB	10.022
Sa Lima LS	04.038	- Santos DF	14.012
Sá Nunes AD	04.030	Santos DM	06.013
Sa PCD	02.026	Santos DS	05.009, 05.025
Sá PGS	08.026	Santos ED	02.035
Sa YAPJ	04.012, 04.044,	Santos EL	12.002
	04.054, 04.056	Santos ES	08.003, 09.029,
Sabaté R	02.024		11.017
Sabino JPJ	06.038, 08.008	Santos F	08.004
Sabino Silva R	02.015, 02.033	Santos FA	09.005, 09.037,
Sachett A	09.020		09.046
Sacramento L	11.005	Santos FCA	02.014
Saénz suarez PA	09.017	Santos FMR	14.007
Salas CE	09.063	Santos GRC	04.043
Sales ACS	09.005	Santos GS	12.017
Sales PF	09.024	Santos H	06.047
Salvatore P	03.008	Santos HCDN	01.009
Samala M	07.005, 07.015	Santos IB	09.003, 09.026
Sampaio TL	06.025, 06.053,	Santos IBS	09.002, 09.044
Sampaio TL	09.030, 09.077	Santos IL	14.003
Sanchez Moura A		Santos J	09.084
Sandoval JA	09.009	Santos JCC	09.048
	10.024	Santos JCN	12.004
Santagada V Santana ACC	04.035	Santos JET	06.007, 06.019,
	04.022, 04.056		06.031, 06.033,
Santana AEG	08.005, 09.035,		06.049
Cantana DD	09.055	Santos JFD	02.015, 02.032,
Santana DB	11.010		02.033, 02.036
Santana DG	09.080	Santos JL	08.005
Santana Filho VJ	09.059	Santos JR	09.083
Santana J	08.013	Santos LCD	03.014, 09.036,
Santana Júnior JCV	04.047		09.078, Santos LD
Santana LMC	02.026		03.017,
Santana MCE	03.011, 03.024,		Santos LD 07.007
	03.025	Santos LD	09.076
Santiago GMP	10.015	Santos LDS	10.015
Santoro ML	05.024	Santos LOS	11.018
Santos AA	03.002, 03.011,	Santos LO	14.003
	03.016, 03.026,	Santos LS	05.010
	09.022	Junitos LJ	05.010

Santos MA	09.084	Scarante FF	03.005
Santos MAV	06.009	Scarante FF	03.018
Santos MC	09.079	Scarim CB	12.003
Santos MCL	10.009	Scatolin M	04.026
Santos ML	03.013, 03.025	Scatolin M	09.072
	,		
Santos MRV	06.013, 09.059	Scavone C	01.004, 02.007,
Santos MS	04.025	Cabinallan M	04.037, 04.038
Santos MS	04.055	Schindler M	09.020
Santos MS	12.005	Schmidt D	09.032
Santos ORS	11.010	Schmitt M	06.003
Santos PALD	09.036, 09.078	Schneider AH	04.014
Santos PF	06.044	Scholl S	04.053
Santos PFS	12.013	Schulz R	06.052
Santos PHN	08.014	Scio E	09.071
Santos RB	08.008	Scomparin DS	03.005.03.018
Santos RFS	14.012	Scussel R	05.014
Santos RP	06.025	Sebire G	07.021
Santos RPD	09.030	Seguin CS	10.001
Santos SA	06.051, 10.002,	Seito LN	10.006
	10.011, 10.020,	Serafim CAL	08.002, 08.016,
	10.026		08.020, 08.033
Santos SBD	09.036, 09.078	Serra D	08.019
Santos SDSS	09.009	Serra MF	04.022
Santos Silva JC	07.004	Serra YA	03.012, 03.013,
Santos Silva T	05.017		03.026
Santos SL	06.051, 10.002,	Servian CDPS	06.045
	10.011	Severino B	04.035
Santos SMD	09.001	Severino P	10.011
Santos TB	03.003, 03.012,	Severo PH	04.027
	03.013, 03.025	Severo PH	07.003
Santos VGBD	01.010	Shan AYKV	04.010,08.005,
Santos VL	08.021, 08.025		09.035, 09.055,
Santos VV	11.002, 11.016,		10.013, 10.020
	12.001	Shuhama R	04.041
Santos VWD	07.002	Silva AA	03.027
Santos WC	06.035	Silva AAS	07.007, 07.011,
Santos WM	04.028, 04.058,		07.016
	09.039	Silva AAV	06.056, 08.006,
Santos YMO	02.015, 02.033,		09.013, 09.015
	02.036	Silva ACA	11.008
Saroratto AS	05.023	Silva ACAE	01.008
Sartori T	04.005	Silva ACDL	09.075
Savia SFLD	14.012	Silva ACSS	10.023
Savino WS	04.019	Silva AD	09.062
Scapinello J	04.026	Silva ADS	09.036, 09.078
Scapinello J	09.072	Silva AE	01.009, 04.009,
Scarabelot VLS	05.010	5	04.025, 04.055
Scaramello CBV	06.043; 06.039	Silva AM	14.012
100 Elet Drogilica Com			11012

		011 501.10	
Silva AMO	12.014	Silva EPMD	09.012, 09.016,
Silva AO	08.002, 08.016,		09.038
	08.033	Silva FAC	08.037
Silva AS	08.005	Silva FAO	06.005
Silva AS	09.040	Silva FDS	09.006, 09.041
Silva AV	12.012	Silva FH	07.018
Silva AVD	02.017, 02.018	Silva Filho SE	04.049
Silva AVL	09.005	Silva FS	08.001, 08.010,
Silva AVLD	09.046	5117415	08.011, 08.026,
Silva BA	07.006		08.037, 14.004,
Silva BAAE	02.009		14.005, 14.015
Silva BAO	08.001, 08.010	Silva GB	04.050
Silva Batista WWB	08.009, 09.042	Silva GNA	06.044
Silva BM	08.023	Silva GR	09.007
Silva BP	06.025, 06.053,	Silva GVD	02.013
	09.030	Silva HRF	09.021
Silva BRMD	02.036	Silva IMA	09.047
Silva CAM	01.017	Silva IS	04.008
Silva CAO	06.056, 08.006,	Silva J	01.013, 06.017
	09.013	Silva JAG	08.025
Silva CJ	11.008	Silva JB	01.005
Silva CLM	01.002, 04.023	Silva JCC	14.018
Silva CM	11.006	Silva JCG	06.003, 09.025,
Silva CMP	05.005		09.027, 09.048,
Silva CMP	05.019		09.071, 12.010
Silva Comar FM	04.049	Silva JDAG	09.012, 09.016,
Silva CR	05.002		09.038, 09.057
Silva CRAD	02.026	Silva JF	06.023
Silva D	08.011	Silva JFM	01.009
Silva DA	08.024, 09.011,	Silva JKSD	12.005, 01.009
	10.004, 10.014,	Silva JLM	06.050
	10.025, 12.007,	Silva JMD	02.019
	14.008, 14.012	Silva JN	10.022
Silva DC	14.009	Silva Júnior ED	01.003, 03.014,
Silva DHM	08.031		05.012, 06.020,
Silva DLB	09.060, 09.068		07.005, 07.008,
Silva DM	09.025		07.015
Silva DM	09.027	Silva Júnior EF	12.005, 12.010
Silva DS		Silva Júnior EN	
	08.001, 08.010		10.008, 10.012
Silva EA	11.006, 11.007,	Silva Júnior GB	06.008
	11.008	Silva Júnior NJ	09.017
Silva EADSF	02.032	Silva Junior PN	12.015
Silva EAP	06.013, 06.051	Silva Júnior RMP	02.006
Silva ECOS	07.021	Silva KCJ	04.009, 01.009
Silva EJR	07.007, 07.011,	Silva KL	06.056, 08.006,
	07.016		09.013, 09.015
Silva EMF	02.004, 02.031	Silva KP	06.020, 01.003

	02 002 02 012		00.046
Silva KSO	03.003, 03.013,	Silva RAC	09.046
	03.025	Silva RAVS	02.006
Silva KTR	11.007, 11.008	Silva RC	04.023
Silva LAA	12.008	Silva RCMVAF	06.011, 07.019
Silva LAN	01.016	Silva RL	05.020
Silva LAS	04.028, 09.039,	Silva RML	02.002
	12.009	Silva RO	09.064
Silva LB	06.009	Silva RO	09.082
Silva LCD	09.010	Silva RZ	06.002
Silva LDL	09.032	Silva SB	06.014, 06.054
Silva LLC	06.009	Silva SBD	06.055
Silva LM	06.011, 07.019,	Silva SJL	09.016
	10.005	Silva SLOS	12.018
Silva LMO	08.002, 08.016,	Silva SMA	05.013
	08.033	Silva TA	04.014
Silva LP	10.023	Silva TG	08.025, 09.012,
Silva LTPE	01.015		09.016, 09.038,
Silva Luis CC	06.022		09.057
Silva MCC	07.006	Silva TS	05.006
Silva MCS	09.061	Silva U	11.008
Silva MDCC	09.040	Silva VC	02.022
Silva MFS	10.007, 10.009	Silva VCS	05.011
Silva MFS	10.012	Silva VF	08.023
Silva MGL	04.029	Silva VG	08.029
Silva MPG	12.004	Silva VIAP	14.007
Silva MS	08.005	Silva VM	04.012
Silva MS	09.033	Silva VR	10.015
Silva MTB	06.038, 08.008	Silva VVD	04.011
Silva N	05.003	Silva WFP	06.014, 06.054,
Silva Neto GJ	04.009, 09.079		06.055
Silva Neto JA	01.013, 02.005,	Silvares RR	04.011, 06.046,
	02.017, 02.018,		09.066, 14.010,
	02.022, 02.034,		14.014
	02.036	Silveira AFD	09.067
Silva NKDGT	02.022	Silveira AR	11.011
Silva OBSD	02.017, 02.022,	Silveira JAM	06.005, 09.021,
5114 0 0 0 0	02.034	Silvend Silvi	09.050
Silva PAD	09.012	Silveira M	03.017
Silva PAD	09.012	Silveira NPS	05.010
Silva PAD	09.038	Simões LO	06.009
Silva PC	09.029	Simões RL	04.054
Silva PC	11.017	Simões SC	01.013
Silva PCS	04.057	Sigueira RJB	06.005
Silva PGB	10.021	Siqueira RJBD	09.015
Silva PHL	06.052	Siqueira KJBD Smaniotto S	07.014
Silva PLB		Smaniotto SS	
Silva PRD	09.021 08.021	Soares AG	04.019
Silva PRD Silva RAC	08.021	Soares AG Soares AG	04.016 07.018
			01.010

Soares AG	09.083	Sousa JAD	08.022
Soares BL	05.012	Sousa JMS	09.069
Soares de Moura R	09.003, 09.004,	Sousa JSLL	08.009, 09.042
	09.026, 09.060,	Sousa KS	04.034
	09.068, 09.002	Sousa KTS	09.052
Soares DM	04.047	Sousa LH	04.052
Soares DSC	08.009	Sousa MAS	11.010
Soares ES	02.025	Sousa MED	07.017
Soares FAA	05.014	Sousa MF	06.038
Soares FAS	02.008	Sousa MGO	09.038
Soares JC	09.043	Sousa MV	01.012, 04.051
Soares LAL	06.014	Sousa NA	04.052, 08.028
Soares MBP	09.053	Sousa NAD	09.054
Soares MBPS	05.025	Sousa Neto BP	10.022
Soares MBPS	06.009	Sousa RGC	08.014, 08.015,
Soares MJDS	09.019		08.022
Soares PMG	08.012, 09.064,	Sousa RS	08.025
	09.082	Sousa RSD	09.012, 09.016,
Soares RA	09.002, 09.003,		09.038, 09.057
	09.004, 09.026,	Sousa VC	14.003
	09.044, 09.060,	Souto NS	11.011
	09.068	Souza A	05.010
Soares Rachetti VDP	03.004, 03.014	Souza ABM	09.009
Soares RC	04.028	Souza ADJD	02.003
Soares VVM	12.015	Souza AH	04.053
Socodato R	09.054	Souza AS	02.027
Soletti JI	09.084	Souza BDS	09.006, 09.041
Sonego AB	03.021	Souza CFD	09.049
Soriano EM	09.082	Souza CMVD	09.028
Sousa AC	10.012	Souza CRR	06.028
Sousa AJC	08.009 <i>,</i> 09.042	Souza DN	07.004
Sousa ARC	08.031	Souza DS	09.059
Sousa CFAJ	08.015, 08.022	Souza EPBSS	04.028, 09.039,
Sousa ESA	04.001, 04.030		12.009
Sousa FBM	08.003, 08.018,	Souza EV	04.028
	08.023, 08.028,	Souza FHV	01.012, 04.051
	08.034, 09.006,	Souza Filho OP	09.051
	09.029	Souza FMA	02.005, 02.017,
Sousa GC	08.024, 08.034,		02.018, 02.022,
	09.029		02.034, 02.036
Sousa GLS	01.012	Souza GFD	02.005, 02.017,
Sousa GS	08.014		02.018, 02.022,
Sousa IA	08.017		02.034
Sousa IJO	04.007, 08.029	Souza GMM	10.027
Sousa ITCD	09.014	Souza GP	04.024, 04.048
Sousa JA	08.004, 08.014,	Souza GS	05.020
	08.015	Souza ILL	07.006
Sousa JACD	02.030, 09.037	Souza INDO	02.028
	-		

Souza JB	04.010, 09.035,	Teixeira AH	04.052
	09.055, 10.013,	Teixeira CF	03.015
	10.020, 10.026	Teixeira CJ	07.004
Souza JLC	10.015	Teixeira RGS	06.035, 09.028
Souza JMT	12.007	Teixeira SA	04.013, 04.016,
Souza JMT	14.008		04.035, 04.050,
Souza KFS	01.011		06.036
Souza KP	06.021; 06.029;	Teles FB	04.015, 04.043
	06.043; 12.002	Teles KT	12.017
Souza LM	05.022	Telles JEQ	10.005
Souza LS	05.012	Telles PVN	08.008
Souza MA	04.026	Tenório LPG	07.021
Souza MHLP	08.012, 09.064,	Texeira KCS	09.036
	09.082	Texeira KCS	09.078
Souza MK	09.063	Thorstenberg MLP	04.023
Souza MM	03.001, 02.002,	Tirapelli C	03.017, 06.010,
	02.027	Thapeni e	06.019
Souza ORB	08.004, 14.012	Tirloni CAS	06.024
Souza P	06.011	Tizziani T	02.019
Souza P Souza P	07.019	Tomassini TCB	02.019
Souza PEN Souza PND	01.012	Torquato HF	01.011, 12.002
	06.030	Torregrossa R	06.036
Souza PND	09.045	Torres Bonilla KA	09.017
Souza SBS	09.055	Torres CS	10.021
Souza SBS	09.078	Torres ILS	05.010
Souza SM	10.015	Torres IT	12.017
Souza ST	07.021	Torres JC	10.024
Souza TNC	09.033	Torresi JLDB	01.018
Souza TPMS	12.018	Torrezan GT	10.019
Spadari CC	04.013	Tostes, RCA	01.013, 06.050,
Spiller F	04.057		06.023, 06.020,
Stern CAJ	03.007		06.017, 06.041
Stipp MC	10.005	Tozzato GPZ	06.012, 06.048
Stiz DS	06.032	Trajano FMG	07.008
Strauch MA	09.018, 09.045	Travassos RA	09.075, 12.008
Strocchi S	02.024	Treptow WT	12.017
Suarez kurtz G	11.014, 11.015	Trindade GNC	04.007
Svensjö ES	01.007	Trindade PL	09.068
т		Trujillo SF	11.005
- Takeda P	11.005	Tsujita M	04.046
Tamura EK	03.013, 03.025	Turin Oliveira NM	10.005
Tavares EBG	04.039	Turra BO	03.015, 09.067
		U	
Tavares henriques MDS Tavares JF		Uchôa BO	06.005
Tavares JF Tavares MAB	05.009	Uchôa PLO	06.005
	10.027		10.021
Távora FRF	10.021	Uetanabaro APT	03.003, 03.013,
Taylor MC	12.003		03.025

Uliana DL	02.031	Vieira MPDS	02.005, 02.017,	
Uliana DL	03.022		02.018, 02.022,	
Umaña ER	02.007, 04.038,		02.034	
	04.037	Vieira SP	06.003, 09.025,	
Ururahi M	11.013		09.048	
V		Vila verde C	03.022	
Vale ML	05.005, 05.019	— Vilela WR	04.051	
Valença SS	08.036, 08.037	Vilhena JC	09.026	
Valença W	10.008	Villarreal CF	05.009, 05.025,	
Valle MB	09.023		09.053	
Vasconcelos CML	09.059	Virgolini MB	11.003	
Vasconcelos DFP	09.041	Vitorasso R	08.013	
Vasconcelos DFF		Volfe CRB	04.026	
Vascunceius Drsa	06.009, 06.032,	Volobuff CRF	09.001	
	07.013, 09.008,	Voltz L	03.006	
	09.031, 09.051,	W		
	09.073, 12.001		04.022	
Vasconcelos P	10.001	Waisman A	04.033	
Vasconcelos RC	08.002	Walter ME	14.004	
Vasconcelos UVRG	09.075, 12.008	Wanderley AG	09.062	
Vasquez EC	06.015,08.007,	Weckwerth GM	11.004	
	12.006	Werner MFP	05.022	
Vasquez YR	04.037	Whiteman M	04.013, 04.050,	
Vaz AA	11.011		06.036	
Vaz C	10.001	Wiirzler LA	04.049	
Vecchia CAD	02.016	Wilke DV	04.015, 04.043,	
Veloso CAG	09.007		09.081	
Velozo EDS	09.051	Wiltenburg VD	09.076	
Velozo ES	05.009	Wong DVT	04.021, 04.042,	
Venturin G	10.003		10.019, 10.021	
Veras FPVP	02.004	Х		
Veras RC	06.022		44.004.44.005	
Veras RC	06.057	Xavier B	14.004, 14.005,	
Vercelino RV	05.010		14.015	
Veronesi VB	07.004	Xie J	14.001	
Viana AFSC	09.046	Ximenes da Silva A	02.012	
Viana EA	08.019	Ximenes RM	06.014	
Viana GSDB	09.037	Ximenez JPB	11.014, 11.015	
Viana MDM	05.013	Xisto DG	04.022	
Vianna KSV	14.006	Y		
Vicente MA	03.005	Yahata MAY	09.009	
Victoni T	04.018	Yamamoto PA	10.023	
Vieceli PS	09.053	Yamazaki DADS	09.001	
Viegas Junior C		Yokoyama TS		
0	12.011	TUKUYAIIIA IS	03.012, 03.020,	
Vieira ACS	12.005		03.026	
Vieira CB	06.021	Yunes RAY	02.027	
Vieira CB	06.029	Z		
Vieira da Silva F	08.009	Zaias AB	01.011	
Vieira GC	08.002			125

Zambom L	10.001
Zanatta AP	09.020
Zanatta L	09.020
Zanella CA	02.025
Zaniboni CR	03.020
Zanotelli P	02.016
Zanotto Filho A	05.018, 07.002
Zeni ALB	02.002
Zhao Y	14.001
Zilli GAL	02.016, 04.026,
	12.016
Zottis C	04.026
Zuardi AW	05.016
Zucolotto SM	06.006

SBFTE thanks the following organizations for their Sponsorship

CAPES	Conselho Nacional de Desanvolvimento Científico e Tecnológico	FAPESP	
Coordination for the Improvement of Higher Education Personnel (CAPES) Financial Support	National Council for Scientific and Tecnological Development Financial Support	State of São Paulo Research Foundation Financial Support	
	FAPEAL FUNDAÇÃO DE AMPARO À PESOUISA DO ESTADO DE AMAGOAS	HASTITUTE DE REMERENCE CASADO GAMA	
Federal University of Alagoas Financial Support	State of Alagoas Research Foundation Financial Support	Hemerson Casado Gama Institute	
mais vida para você			
Aché Senior Pharmacologist Award	Biolab-Sanus-Farmacêutica Financial support José Ribeiro do Valle Award	Alesco Ind e Com Exhibitor	
greiner bio-one	A R K E N a UPS Company	BJP British Journal of Pharmacology	
Greiner Bio-One Brasil Produtos Médicos Hospitalares Ltda Exhibitor	Marken Brasil Serviços de Cadeia de Suprimentos Ltda Meeting bag Folders	British Journal of Pharmacology Meeting bag Folders	
inct inct	CIENP Centro de Inovação e Ensalos Pré-Clínicos	Charles a Agarne Martin	
Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos	Centro de Inovação e Ensaios Pré-Clínicos	Usina Ciência da Universidade Federal de Alagoas	
		NUI eventos	
		Nui Eventos	

Nui Eventos Meeting Secretariat